
- 14 -

ROM BIOS
The design of the MSX ROM is of importance if machine code programs are to be developed efficiently and operate
reliably. Almost every program, including the BASIC Interpreter itself, will require a certain set of primitive functions
to operate. These include screen and printer drivers, a keyboard decoder and other hardware related functions. By
separating these routines from the BASIC Interpreter they can be made available to any application program. The
section of ROM from 0000H to 268BH is largely devoted to such routines and is called the ROM BIOS (Basic Input
Output System). This chapter gives a functional description of every recognizably separate routine in the ROM BIOS.
Special attention is given to the "standard" routines. These are documented by Microsoft and guaranteed to remain
consistent through possible hardware and software changes. The first few undred bytes of the ROM consists of Z80 JP
instructions which provide fixed position entry points to these routines. For maximum compatibility with future
software an application program should restrict its dependence on the ROM to these locations only. The description of
the ROM begins with this list of entry points to the standard routines. A brief comment is placed with each entry point,
the full description is given with the routine itself.

4.1 Data Areas
It is expected that most users will wish to disassemble the ROM to some extent (the full listing runs to nearly four
hundred pages). In order to ease this process the data areas, which do not contain executable Z80 code, are shown
below:

0004H-0007H 185DH-1863H 4B3AH-4B4CH 73E4H-73E4H
002BH-002FH 1B97H-1BAAH 4C2FH-4C3FH 752EH-7585H
0508H-050DH 1BBFH-23BEH 555AH-5569H 7754H-7757H
092FH-097FH 2439H-2459H 5D83H-5DB0H 7BA3H-7BCAH
0DA5H-0EC4H 2CF1H-2E70H 6F76H-6F8EH 7ED8H-7F26H
1033H-105AH 3030H-3039H 70FFH-710CH 7F41H-7FB6H
1061H-10C1H 3710H-3719H 7182H-7195H 7FBEH-7FFFH

 1233H-1252H 392EH-3FE1H 71A2H-71B5H
 13A9H-1448H 43B5H-43C3H 71C7H-71DAH
 160BH-1612H 46E6H-46E7H 72A6H-72B9H

Note that these data areas are for the UK ROM, there are slight differences in the Japanese ROM relating to the
keyboard decoder and the video character set. Disparities between the ROMs are restricted to these regions with the
bulk of the codebeing identical in both cases.

4.2 Terminology
Reference is frequently made in this chapter to the standard routines and to Workspace Area variables. Whenever this is
done the Microsoft recommended name is used in upper case letters, for example "the FILVRM standard routine" and
"SCRMOD is set". Subroutines which are not named are referred to by a parenthesized address, "the screen is cleared
(0777H)" for example. When reference is made to the Z80 status flags assembly language conventions are used, for
example "Flag C" would mean that the carry flag is set while "Flag NZ" means that the zero flag is reset. The terms
"EI" and "DI" mean enabled interrupts and disabled interrupts respectively.

ADDR NAME TO FUNCTION
0000H CHKRAM 02D7H Power-up, check RAM
0004H Two bytes, address of ROM character set
0006H One byte, VDP Data Port number
0007H One byte, VDP Data Port number
0008H SYNCHR 2683H Check BASIC program character
000BH NOP
000CH RDSLT 01B6H Read RAM in any slot
000FH NOP
0010H CHRGTR 2686H Get next BASIC program character
0013H NOP
0014H WRSLT 01D1H Write to RAM in any slot
0017H NOP
0018H OUTDO 1B45H Output to current device
001BH NOP
001CH CALSLT 0217H Call routine in any slot
001FH NOP
0020H DCOMPR 146AH Compare register pairs HL and DE
0023H NOP
0024H ENASLT 025EH Enable any slot permanently
0027H NOP
0028H GETYPR 2689H Get BASIC operand type
002BH Five bytes Version Number
0030H CALLF 0205H Call routine in any slot
0033H FiveNOPs
0038H KEYI NT 0C3CH Interru pt handler, keyboard scan
003BH INITIO 049DH Initialize I/O devices
003EH INIFNK 139DH Initialize function key strings
0041H DISSCR 0577H Disable screen
0044H ENA SCR 0570H Enable screen
0047H WRTVDP 057FH Write to any VDP register

- 15 -

004AH RDVRM 07D7H Read byte from VRAM
004DH WRTVRM 07CDH Write byte to VRAM
0050H SETRD 07ECH Set up VDP for read
0053H SETWR T 07DFH Set up VDP for write
0056H FILVRM 0815H Fill block of VRAM with data byte
0059H LDIRMV 070FH Copy block to memory from VRAM
005CH LDIRVM 0744H Copy block to VRAM, from memory
005FH CHGMOD 084FH Change VDP mode
0062H CHGCLR 07F7H Change VDP colours
0065H NOP
0066H NMI 1398H Non Maskable Interrupt handler
0069H CLRSPR 06A8H Clear all sprites
006CH INITXT 050EH Initialize VDP to 40x24 Text Mode
006FH INIT32 0538H Initialize VDP to 32x24 Text Mode
0072H INIGRP 05D2H Initialize VDP to Graphics Mode
0075H INIMLT 061FH Initialize VDP to Multicolour Mode
0078H SETTXT 0594H Set VDP to 40x24 Text Mode
007BH SETT32 05B4H Set VDP to 32x24 Text Mode
007EH SETGRP 0602H Set VDP to Graphics Mode
0081H SETMLT 0659H Set VDP to Multicolour Mode
0084H CALPAT 06E4H Calculate address of sprite pattern
0087H CALATR 06F9H Calculate address of sprite attribute
008AH GSPSIZ 0704H Get sprite size
008DH GRPPRT 1510H Print character on graphic screen
0090H GICINI 04BDH Initialize PSG (GI Chip)
0093H WRTPSG 1102H Write to any PSG register
0096H RDPSG 110EH Read from any PSG register
0099H STRTMS 11C4H Start music dequeueing
009CH CHSNS 0D6AH Sense keyboard buffer for character
009FH CHGET 10CBH Get character from keyboard buffer (wait)
00A2H CHPUT 08BCH Screen character output
00A5H LPTOUT 085DH Line printer character output
00A8H LPTSTT 0884H Line printer status test
00ABH CNVCHR 089DH Convert character with graphic header
00AEH PINLIN 23BFH Get line from console (editor)
00B1H INLIN 23D5H Get line from console (editor)
00B4H QINLIN 23CCH Display "?", get line from console (editor)
00B7H BREAKX 046FH Check CTRL-STOP key directly
00BAH ISCNTC 03FBH Check CRTL-STOP key
00BDH CKCNTC 10F9H Check CTRL-STOP key
00C0H BEEP 1113H Go beep
00C3H CLS 0848H Clear screen
00C6H POSIT 088EH Set cursor position
00C9H FNKSB 0B26H Check if function key display on
00CCH ERAFNK 0B15H Erase function key display
00CFH DSPFNK 0B2BH Display function keys
00D2H TOTEXT 083BH Return VDP to text mode
00D5H GTSTCK 11EEH Get joystick status
00D8H GTTRIG 1253H Get trigger status
00DBH GTPAD 12ACH Get touch pad status
00DEH GTPDL 1273H Get paddle status
00E1H TAPION 1A63H Tape input ON
00E4H TAPIN 1ABCH Tape input
00E7H TAPIOF 19E9H Tape input OFF
00EAH TAPOON 19F1H Tape output ON
00EDH TAPOUT 1A19H Tape output
00F0H TAPOOF 19DDH Tape output OFF
00F3H STMOTR 1384H Turn motor ON/OFF
00F6H LFTQ 14EBH Space left in music queue
00F9H PUTQ 1492H Put byte in music queue
00FCH RIGHTC 16C5H Move current pixel physical address right
00FFH LEFTC 16EEH Move current pixel physical address left
0102H UPC 175DH Move current pixel physical address up
0105H TUPC 173CH Test then UPC if legal
0108H DOWNC 172AH Move current pixel physical address down
010BH TDOWNC 170AH Test then DOWNC if legal
010EH SCALXY 1599H Scale graphics coordinates
0111H MAPXYC 15DFH Map graphic coordinates to physical address
0114H FETCHC 1639H Fetch current pixel physical address
0117H STOREC 1640H Store current pixel physical address
011AH SETATR 1676H Set attribute byte
011DH READC 1647H Read attribute of current pixel
0120H SETC 167EH Set attribute of current pixel
0123H NSETCX 1809H Set attribute of number of pixels
0126H GTASPC 18C7H Get aspect ratio
0129H PNTINI 18CFH Paint initialize
012CH SCANR 18E4H Scan pixels to right
012FH SCANL 197AH Scan pixels to left
0132H CHGCAP 0F3DH Change Caps Lock LED
0135H CHGSND 0F7AH Change Key Click sound output
0138H RSLREG 144CH Read Primary Slot Register
013BH WSLREG 144FH Write to Primary Slot Register
013EH RDVDP 1449H Read VDP Status Register
0141H SNSMAT 1452H Read row of keyboard matrix
0144H PHYDIO 148AH Disk, no action
0147H FORMAT 148EH Disk, no action
014AH ISFLIO 145FH Check for file I/O
014DH OUTDLP 1B63H Formatted output to line printer
0150H GETVCP 1470H Get music voice pointer
0153H GETVC2 1474H Get music voice pointer
0156H KILBUF 0468H Clear keyboard buffer
0159H CALBAS 01FFH Call to BASIC from any slot
015CH NOPs to
01B5H for expansion

- 16 -

 Address... 01B6H
 Name...... RDSLT
 Entry..... A=Slot ID, HL=Address
 Exit...... A=Byte read
 Modifies.. AF, BC, DE, DI

Standard routine to read a single byte from memory in any slot. The Slot Identifier is composed of a Primary Slot
number, a Secondary Slot number and a flag:

7 6 5 4 3 2 1 0
Flag 0 0 0 Secondary Slot# Primary Slot#

Figure 34: Slot ID

The Flag is normally 0 but must be 1 if a Secondary Slot number is included in the Slot ID. The memory address and
Slot ID are first processed (027EH) to yield a set of bit masks to apply to the relevant slot register. If a Secondary Slot
Number is specified then the Secondary Slot Register is first modified to select the relevant page from that Secondary
Slot (02A3H). The Primary Slot is then switched in to the Z80 address space, the byte read and the Primary Slot
restored to its original setting via the RDPRIM routine in the Workspace Area. Finally, if a Secondary Slot Number is
included in the Slot ID, the original Secondary Slot Register setting is restored (01ECH). Note that, unless it is the slot
containing the Workspace Area, any attempt to access page 3 (C000H to FFFFH) will cause the system to crash as
RDPRIM will switch itself out. Note also that interrupts are left disabled by all the memory switching routines.

 Address... 01D1H
 Name...... WRSLT
 Entry..... A=Slot ID, HL=Address, E=Byte to write
 Exit...... None
 Modifies.. AF, BC, D, DI

Standard routine to write a single byte to memory in any slot. Its operation is fundamentally the same as that of the
RDSLT standard routine except that the Workspace Area routine WRPRIM is used rather than RDPRIM.

 Address... 01FFH
 Name...... CALBAS
 Entry..... IX=Address
 Exit...... None
 Modifies.. AF', BC', DE', HL', IY, DI

Standard routine to call an address in the BASIC Interpreter from any slot. Usually this will be from a machine code
program running in an extension ROM in page 1 (4000H to 7FFFH). The high byte of register pair IY is loaded with the
MSX ROM Slot ID (00H) and control transfers to the CALSLT standard routine.

 Address... 0205H
 Name...... CALLF
 Entry..... None
 Exit...... None
 Modifies.. AF', BC', DE', HL', IX, IY, DI

Standard routine to call an address in any slot. The Slot ID and address are supplied as inline parameters rather than in
registers to fit inside a hook (Chapter 6), for example:

 RST 30H
 DEFB Slot ID
 DEFW Address
 RET

The Slot ID is first collected and placed in the high byte of register pair IY. The address is then placed in register pair
IX and control drops into the CALSLT standard routine.

- 17 -

 Address... 0217H
 Name...... CALSLT
 Entry..... IY(High byte)=Slot ID, IX=Address
 Exit...... None
 Modifies.. AF', BC', DE', HL', DI

Standard routine to call an address in any slot. Its operation is fundamentally the same as that of the RDSLT standard
routine except that the Workspace Area routine CLPRIM is used rather than RDPRIM. Note that CALBAS and CALLF
are just specialized entry points to this standard routine which offer a reduction in the amount of code required.

 Address... 025EH
 Name...... ENASLT
 Entry..... A=Slot ID, HL=Address
 Exit...... None
 Modifies.. AF, BC, DE, DI

Standard routine to switch in a page permanently from any slot. Unlike the RDSLT, WRSLT and CALSLT standard
routines the Primary Slot switching is performed directly and not by a Workspace Area routine. Consequently addresses
in page 0 (0000H to 3FFFH) will cause an immediate system crash.

 Address... 027EH

This routine is used by the memory switching standard routines to turn an address, in register pair HL, and a Slot ID, in
register A, into a set of bit masks. As an example a Slot ID of FxxxSSPP and an address in Page 1 (4000H to 7FFFH)
would return the following:

Register B= 00 00 PP 00 (OR mask)
Register C= 11 11 00 11 (AND mask)
Register D= PP PP PP PP (Replicated)
Register E= 00 00 11 00 (Page mask)

Registers B and C are derived from the Primary Slot number andthe page mask. They are later used to mix the new
Primary Slotnumber into the existing contents of the Primary Slot Register. Register D contains the Primary Slot
number replicated four times and register E the page mask. This is produced by examining the two most significant bits
of the address, to determine the page number, and then shifting the mask along to the relevant position. These registers
are later used during Secondary Slot switching. As the routine terminates bit 7 of the Slot ID is tested, to determine
whether a Secondary Slot has been specified, and Flag M returned if this is so.

 Address... 02A3H

This routine is used by the memory switching standard routines to modify a Secondary Slot Register. The Slot ID is
supplied in register A while registers D and E contain the bit masks shown in the previous routine. Bits 6 and 7 of
register D are first copied into the Primary Slot register. This switches in page 3 from the Primary Slot specified by the
Slot ID and makes the required Secondary Slot Register available. This is then read from memory location FFFFH and
the page mask, inverted, used to clear the required two bits. The Secondary Slot number is shifted to the relevant
position and mixed in. Finally the new setting is placed in the Secondary Slot Register and the Primary Slot Register
restoredto its original setting.

 Address... 02D7H
 Name...... CHKRAM
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, SP

Standard routine to perform memory initialization at power-up. It non-destructively tests for RAM in pages 2 and 3 in
all sixteen possible slots then sets the Primary and Secondary Slot registers to switch in the largest area found. The
entire Workspace Area (F380H to FFC9H) is zeroed and EXPTBL and SLTTBL filled in to map any expansion
interfaces in existence Interrupt Mode 1 is set and control transfers to the remainder of the power-up initialization
routine (7C76H).

- 18 -

 Address... 03FBH
 Name...... ISCNTC
 Entry..... None
 Exit...... None
 Modifies.. AF, EI

Standard routine to check whether the CTRL-STOP or STOP keys have been pressed. It is used by the BASIC
Interpreter at the end of each statement to check for program termination. BASROM is first examined to see if it
contains a non-zero value, if so the routine terminates immediately. This is to prevent users breaking into any extension
ROM containing a BASIC program. INTFLG is then checked to determine whether the interrupt handler has placed the
CTRL-STOP or STOP key codes (03H or 04H) there. If STOP has been detected then the cursor is turned on (09DAH)
and INTFLG continually checked until one of the two key codes reappears. The cursor is then turned off (0A27H) and,
if the key is STOP, the routine terminates. If CTRL-STOP has been detected then the keyboard buffer is first cleared via
the KILBUF standard routine and TRPTBL is checked to see whether an "ON STOP GOSUB" statement is active. If so
the relevant entry in TRPTBL is updated (0EF1H) and the routine terminates as the event will be handled by the
Interpreter Runloop. Otherwise the ENASLT standard routine is used to switch in page 1 from the MSX ROM, in case
an extension ROM is using the routine, and control transfers to the "STOP" statement handler (63E6H).

 Address... 0468H
 Name...... KILBUF
 Entry..... None
 Exit...... None
 Modifies.. HL

Standard Routine to clear the forty character type-ahead keyboard buffer KEYBUF. There are two pointers into this
buffer, PUTPNT where the interrupt handler places characters, and GETPNT where application programs fetch them
from. As the number of characters in the buffer is indicated by the difference between these two pointers KEYBUF is
emptied simply by making them both equal.

 Address... 046FH
 Name...... BREAKX
 Entry..... None
 Exit...... Flag C if CTRL-STOP key pressed
 Modifies.. AF

Standard routine which directly tests rows 6 and 7 of the keyboard to determine whether the CTRL and STOP keys are
both pressed. If they are then KEYBUF is cleared and row 7 of OLDKEY modified to prevent the interrupt handler
picking the keys up as well. This routine may often be more suitable for use by an application program, in preference to
ISCNTC, as it will work when interrupts are disabled, during cassette I/O for example, and does not exit to the
Interpreter.

 Address... 049DH
 Name...... INITIO
 Entry..... None
 Exit...... None
 Modifies.. AF, E, EI

Standard routine to initialize the PSG and the Centronics Status Port. PSG Register 7 is first set to 80H making PSG
Port B=Output and PSG Port A=Input. PSG Register 15 is set to CFH to initialize the Joystick connector control
hardware. PSG Register 14 is then read and the Keyboard Mode bit placed in KANAMD, this has no relevance for UK
machines. Finally a value of FFH is output to the Centronics Status Port (I/O port 90H) to set the STROBE signal high.
Control then drops into the GICINI standard routine to complete initialization.

 Address... 04BDH
 Name...... GICINI
 Entry..... None
 Exit...... None
 Modifies.. EI

Standard routine to initialize the PSG and the Workspace Area variables associated with the "PLAY" statement.
QUETAB, VCBA, VCBB and VCBC are first initialized with the values shown in Chapter 6. PSG Registers 8, 9 and 10

- 19 -

are then set to zero amplitude and PSG Register 7 to B8H. This enables the Tone Generator and disables the Noise
Generator on each channel.

 Address... 0508H

This six byte table contains the "PLAY" statement parameters initially placed in VCBA, VCBB and VCBC by the
GICINI standard routine: Octave=4, Length=4, Tempo=120, Volume=88H, Envelope=00FFH.

 Address... 050EH
 Name...... INITXT
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to initialize the VDP to 40x24 Text Mode. The screen is temporarily disabled via the DISSCR standard
routine and SCRMOD and OLDSCR set to 00H. The parameters required by the CHPUT standard routine are set up by
copying LINI.40 to LINLEN, TXTNAM to NAMBAS and TXTCGP to CGPBAS. The VDP colours are then set by the
CHGCLR standard routine and the screen is cleared (077EH). The current character set is copied into the VRAM
Character Pattern Table (071EH). Finally the VDP mode and base addresses are set via the SETTXT standard routine
and the screen is enabled.

 Address... 0538H
 Name...... INIT32
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to initialize the VDP to 32x24 Text Mode. The screen is temporarily disabled via the DISSCR standard
routine and SCRMOD and OLDSCR set to 01H. The parameters required by the CHPUT standard routine are set up by
copying LINL32 to LINLEN, T32NAM to NAMBAS, T32CGP to CGPBAS, T32PAT to PATBAS and T32ATR to
ATRBAS. The VDP colours are then set via the CHGCLR standard routine and the screen is cleared (077EH). The
current character set is copied into the VRAM Character Pattern Table (071EH) and all sprites cleared (06BBH).
Finally the VDP mode and base addresses are set via the SETT32 standard routine and the screen is enabled.

 Address... 0570H
 Name...... ENASCR
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, EI

Standard routine to enable the screen. This simply involves setting bit 6 of VDP Mode Register 1.

 Address... 0577H
 Name...... DISSCR
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, EI

Standard routine to disable the screen. This simply involves resetting bit 6 of VDP Mode Register 1.

 Address... 057FH
 Name...... WRTVDP
 Entry..... B=Data byte, C=VDP Mode Register number
 Exit...... None
 Modifies.. AF, B, EI

Standard routine to write a data byte to any VDP Mode Register. The register selection byte is first written to the VDP
Command Port, followed by the data byte. This is then copied to the relevant register image, RGOSAV to RG7SAV, in
the Workspace Area

- 20 -

 Address... 0594H
 Name...... SETTXT
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to partially set the VDP to 40x24 Text Mode. The mode bits M1, M2 and M3 are first set in VDP
Mode Registers 0 and 1. The five VRAM table base addresses, beginning with TXTNAM, are then copied from the
Workspace Area into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

 Address... 05B4H
 Name...... SETT32
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to partially set the VDP to 32x24 Text Mode. The mode bits M1, M2 and M3 are first set in VDP
Mode Registers 0 and 1. The five VRAM table base addresses, beginning with T32NAM, are then copied from the
Workspace Area into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

 Address... 05D2H
 Name...... INIGRP
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to initialize the VDP to Graphics Mode. The screen is temporarily disabled via the DISSCR standard
routine and SCRMOD set to 02H. The parameters required by the GRPPRT standard routine are set up by copying
GRPPAT to PATBAS and GRPATR to ATRBAS. The character code driver pattern is then copied into the VDP Name
Table, the screen cleared (07A1H) and all sprites cleared (06BBH). Finally the VDP mode and base addresses are set
via the SETGRP standard routine and the screen is enabled.

 Address... 0602H
 Name...... SETGRP
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to partially set the VDP to Graphics Mode. The mode bits M1, M2 and M3 are first set in VDP Mode
Registers 0 and 1. The five VRAM table base addresses, beginning with GRPNAM, are then copied from the
Workspace Area into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

 Address... 061FH
 Name...... INIMLT
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to initialize the VDP to Multicolour Mode. The screen is temporarily disabled via the DISSCR
standard routine and SCRMOD set to 03H. The parameters required by the GRPPRT standard routine are set up by
copying MLTPAT to PATBAS and MLTATR to ATRBAS. The character code driver pattern is then copied into the
VDP Name Table, the screen cleared (07B9H) and all sprites cleared (06BBH). Finally the VDP mode and base
addresses are set via the SETMLT standard routine and the screen is enabled.

 Address... 0659H
 Name...... SETMLT
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

- 21 -

Standard routine to partially set the VDP to Multicolour Mode. The mode bits M1, M2 and M3 are first set in VDP
Mode Registers 0 and 1. The five VRAM table base addresses, beginning with MLTNAM, are then copied from the
Workspace Area to VDP Mode Registers 2, 3, 4, 5 and 6.

 Address... 0677H

This routine is used by the SETTXT, SETT32, SETGRP and SETMLT standard routines to copy a block of five table
base addresses from the Workspace Area into VDP Mode Registers 2, 3, 4, 5 and 6. On entry register pair HL points to
the relevant group of addresses. Each base address is collected in turn shifted the required number of places and then
written to the relevant Mode Register via the WRTVDP standard routine.

 Address... 06A8H
 Name...... CLRSPR
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to clear all sprites. The entire 2 KB Sprite Pattern Table is first filled with zeros via the FILVRM
standard routine. The vertical coordinate of each of the thirty-two sprite attribute blocks is then set to -47 (D1H) to
place the sprite above the top of the screen, the horizontal coordinate is left unchanged. The pattern numbers in the
Sprite Attribute Table are initialized with the series 0, 1, 2, 3, 4,... 31 for 8x8 sprites or the series 0, 4, 8, 12, 16,... 124
for 16x16 sprites. The series to be generated is determined by the Size bit in VDP Mode Register 1. Finally the colour
byte of each sprite attribute block is filled in with the colour code contained in FORCLR, this is initially white. Note
that the Size and Mag bits in VDP Mode Register 1 are not affected by this routine. Note also that the INIT32, INIGRP
and INIMLT standard routines use this routine with an entry point at 06BBH, leaving the Sprite Pattern Table
undisturbed.

 Address... 06E4H
 Name...... CALPAT
 Entry..... A=Sprite pattern number
 Exit...... HL=Sprite pattern address
 Modifies.. AF, DE, HL

Standard routine to calculate the address of a sprite pattern. The pattern number is first multiplied by eight then, if
16x16 sprites are selected, multiplied by a further factor of four. This is then added to the Sprite Pattern Table base
address, taken from PATBAS, to produce the final address. This numbering system is in line with the BASIC
Interpreter's usage of pattern numbers rather than the VDP's when 16x16 sprites are selected. As an example while the
Interpreter calls the second pattern number one, it is actually VDP pattern number four. This usage means that the
maximum pattern number this routine should allow, when 16x16 sprites are selected, is sixty-three. There is no actual
check on this limit so large pattern numbers will produce addresses greater than 3FFFH. Such addresses, when passed
to the other VDP routines, will wrap around past zero and corrupt the Character Pattern Table in VRAM.

 Address... 06F9H
 Name...... CALATR
 Entry..... A=Sprite number
 Exit...... HL=Sprite attribute address
 Modifies.. AF, DE, HL

Standard routine to calculate the address of a sprite attribute block. The sprite number, from zero to thirty-one, is
multiplied by four and added to the Sprite Attribute Table base address taken from ATRBAS.

 Address... 0704H
 Name...... GSPSIZ
 Entry..... None
 Exit...... A=Bytes in sprite pattern (8 or 32)
 Modifies.. AF

Standard routine to return the number of bytes occupied by each sprite pattern in the Sprite Pattern Table. The result is
determined simply by examining the Size bit in VDP Mode Register 1.

- 22 -

 Address... 070FH
 Name...... LDIRMV
 Entry..... BC=Length, DE=RAM address, HL=VRAM address
 Exit...... None
 Modifies.. AF, BC, DE, EI

Standard routine to copy a block into main memory from the VDP VRAM. The VRAM starting address is set via the
SETRD standard routine and then sequential bytes read from the VDP Data Port and placed in main memory.

 Address... 071EH

This routine is used to copy a 2 KB character set into the VDP Character Pattern Table in any mode. The base address
of the Character Pattern Table in VRAM is taken from CGPBAS. The starting address of the character set is taken from
CGPNT. The RDSLT standard routine is used to read the character data so this may be situated in an extension ROM.
At power-up CGPNT is initialized with the address contained at ROM location 0004H, which is 1BBFH. CGPNT is
easily altered to produce some interesting results, POKE &HF920,&HC7:SCREEN 0 provides a thoroughly confusing
example.

 Address... 0744H
 Name...... LDIRVM
 Entry..... BC=Length, DE=VRAM address, HL=RAM address
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to copy a block to VRAM from main memory. The VRAM starting address is set via the SETWRT
standard routine and then sequential bytes taken from main memory and written to the VDP Data Port.

 Address... 0777H

This routine will clear the screen in any VDP mode. In 40x24 Text Mode and 32x24 Text Mode the Name Table, whose
base address is taken from NAMBAS, is first filled with ASCII spaces. The cursor is then set to the home position
(0A7FH) and LINTTB, the line termination table, re-initialized. Finally the function key display is restored, if it is
enabled, via the FNKSB standard routine. In Graphics Mode the border colour is first set via VDP Mode Register 7
(0832H). The Colour Table is then filled with the background colour code, taken from BAKCLR, for both 0 and 1
pixels. Finally the Character Pattern Table is filled with zeroes. In Multicolour Mode the border colour is first set via
VDP Mode Register 7 (0832H). The Character Pattern Table is then filled with the background colour taken from
BAKCLR.

 Address... 07CDH
 Name...... WRTVRM
 Entry..... A=Data byte, HL=VRAM address
 Exit...... None
 Modifies.. EI

Standard routine to write a single byte to the VDP VRAM. The VRAM address is first set up via the SETWRT standard
routine and then the data byte written to the VDP Data Port. Note that the two seemingly spurious EX(SP),HL
instructions in this routine, and several others, are required to meet the VDP's timing constraints.

 Address... 07D7H
 Name...... RDVRM
 Entry..... HL=VRAM address
 Exit...... A=Byte read
 Modifies.. AF, EI

Standard routine to read a single byte from the VDP VRAM. The VRAM address is first set up via the SETRD standard
routine and then the byte read from the VDP Data Port.

- 23 -

 Address... 07DFH
 Name...... SETWRT
 Entry..... HL=VRAM address
 Exit...... None
 Modifies.. AF, EI

Standard routine to set up the VDP for subsequent writes to VRAM via the Data Port. The address contained in register
pair HL is written to the VDP Command Port LSB first, MSB second as shown in Figure 7. Addresses greater than
3FFFH will wrap around past zero as the two most significant bits of the address are ignored.

 Address... 07ECH
 Name...... SETRD
 Entry..... HL=VRAM address
 Exit...... None
 Modifies.. AF, EI

Standard routine to set up the VDP for subsequent reads from VRAM via the Data Port. The address contained in
register pair HL is written to the VDP Command Port LSB first, MSB second as shown in Figure 7. Addresses greater
than 3FFFH will wrap around past zero as the two most significant bits of the address are ignored.

 Address... 07F7H
 Name...... CHGCLR
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, HL, EI

Standard routine to set the VDP colours. SCRMOD is first examined to determine the appropriate course of action. In
40x24 Text Mode the contents of BAKCLR and FORCLR are written to VDP Mode Register 7 to set the colour of the 0
and 1 pixels, these are initially blue and white. Note that in this mode there is no way of specifying the border colour,
this will be the same as the 0 pixel colour. In 32x24 Text Mode, Graphics Mode or Multicolour Mode the contents of
BDRCLR are written to VDP Mode Register 7 to set the colour of the border, this is initially blue. Also in 32x24 Text
Mode the contents of BAKCLR and FORCLR are copied to the whole of the Colour Table to determine the 0 and 1
pixel colours.

 Address... 0815H
 Name...... FILVRM
 Entry..... A=Data byte, BC=Length, HL=VRAM address
 Exit...... None
 Modifies.. AF, BC, EI

Standard routine to fill a block of the VDP VRAM with a single data byte. The VRAM starting address, contained in
register pair HL, is first set up via the SETWRT standard routine. The data byte is then repeatedly written to the VDP
Data Port to fill successive VRAM locations.

 Address... 083BH
 Name...... TOTEXT
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to return the VDP to either 40x24 Text Mode or 32x24 Text Mode if it is currently in Graphics Mode
or Multicolour Mode. It is used by the BASIC Interpreter Mainloop and by the "INPUT" statement handler. Whenever
the INITXT or INIT32 standard routines are used the mode byte, 00H or 01H, is copied into OLDSCR. If the mode is
subsequently changed to Graphics Mode or Multicolour Mode, and then has to be returned to one of the two text modes
for keyboard input, this routine ensures that it returns to the same one. SCRMOD is first examined and, if the screen is
already in either text mode, the routine simply terminates with no action. Otherwise the previous text mode is taken
from OLDSCR and passed to the CHGMOD standard routine.

- 24 -

 Address... 0848H
 Name...... CLS
 Entry..... Flag Z
 Exit...... None
 Modifies.. AF, BC, DE, EI

Standard routine to clear the screen in any mode, it does nothing but call the routine at 0777H. This is actually the
"CLS" statement handler and, because this indicates that there is illegal text after the statement, it will simply return if
entered with Flag NZ.

 Address... 084FH
 Name...... CHGMOD
 Entry..... A=Screen mode required (0, 1, 2, 3)
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to set a new screen mode. Register A, containing the required screen mode, is tested and control
transferred to INITXT, INIT32, INIGRP or INIMLT.

 Address... 085DH
 Name...... LPTOUT
 Entry..... A=Character to print
 Exit...... Flag C if CTRL-STOP termination
 Modifies.. AF

Standard routine to output a character to the line printer via the Centronics Port. The printer status is continually tested,
via the LPTSTT standard routine, until the printer becomes free. The character is then written to the Centronics Data
Port (I/O port 91H) and the STROBE signal of the Centronics Status Port (I/O port 90H) briefly pulsed low. Note that
the BREAKX standard routine is used to test for the CTRL-STOP key if the printer is busy. If CTRL-STOP is detected
a CR code is written to the Centronics Data Port, to flush the printer's line buffer, and the routine terminates with Flag
C.

 Address... 0884H
 Name...... LPTSTT
 Entry..... None
 Exit...... A=0 and Flag Z if printer busy
 Modifies.. AF

Standard routine to test the Centronics Status Port BUSY signal. This just involves reading I/O port 90H and examining
the state of bit 1: 0=Ready, 1=Busy.

 Address... 088EH
 Name...... POSIT
 Entry..... H=Column, L=Row
 Exit...... None
 Modifies.. AF, EI

Standard routine to set the cursor coordinates. The row and column coordinates are sent to the OUTDO standard routine
as the parameters in an ESC,"Y",Row+1FH, Column+1FH sequence. Note that the BIOS home position has coordinates
of 1,1 rather than the 0,0 used by the BASIC Interpreter.

 Address... 089DH
 Name...... CNVCHR
 Entry..... A=Character
 Exit...... Flag Z,NC=Header; Flag NZ,C=Graphic; Flag Z,C=Normal
 Modifies.. AF

Standard routine to test for, and convert if necessary, characters with graphic headers. Characters less than 20H are
normally interpreted by the output device drivers as control characters. A character code in this range can be treated as a
displayable character by preceding it with a graphic header control code (01H) and adding 40H to its value. For
example to directly display character code 0DH, rather than have it interpreted as a carriage return, it is necessary to
output the two bytes 01H,4DH. This routine is used by the output device drivers, such as the CHPUT standard routine,

- 25 -

to check for such sequences. If the character is a graphic header GRPHED is set to 01H and the routine terminates,
otherwise GRPHED is zeroed. If the character is outside the range 40H to 5FH it is left unchanged. If it is inside this
range, and GRPHED contains 01H indicating a previous graphic header, it is converted by subtracting 40H.

 Address... 08BCH
 Name...... CHPUT
 Entry..... A=Character
 Exit...... None
 Modifies.. EI

Standard routine to output a character to the screen in 40x24 Text Mode or 32x24 Text Mode. SCRMOD is first
checked and, if the VDP is in either Graphics Mode or Multicolour Mode, the routine terminates with no action.
Otherwise the cursor is removed (0A2EH), the character decoded (08DFH) and then the cursor replaced (09E1H).
Finally the cursor column position is placed in TTYPOS, for use by the "PRINT" statement, and the routine terminates.

 Address... 08DFH

This routine is used by the CHPUT standard routine to decode a character and take the appropriate action. The
CNVCHR standard routine is first used to check for a graphic character, if the character is a header code (01H) then the
routine terminates with no action. If the character is a converted graphic one then the control code decoding section is
skipped. Otherwise ESCCNT is checked to see if a previous ESC character (1BH) has been received, if so control
transfers to the ESC sequence processor (098FH). Otherwise the character is checked to see if it is smaller than 20H, if
so control transfers to the control code processor (0914H). The character is then checked to see if it is DEL (7FH), if so
control transfers to the delete routine (0AE3H). Assuming the character is displayable the cursor coordinates are taken
from CSRY and CSRX and placed in register pair HL, H=Column, L=Row. These are then converted to a physical
address in the VDP Name Table and the character placed there (0BE6H). The cursor column position is then
incremented (0A44H) and, assuming the rightmost column has not been exceeded, the routine terminates. Otherwise the
row's entry in LINTTB, the line termination table, is zeroed to indicate an extended logical line, the column number is
set to 01H and a LF is performed.

 Address... 0908H

This routine performs the LF operation for the CHPUT standard routine control code processor. The cursor row is
incremented (0A61H) and, assuming the lowest row has not been exceeded, the routine terminates. Otherwise the
screen is scrolled upwards and the lowest row erased (0A88H).

 Address... 0914H

This is the control code processor for the CHPUT standard routine. The table at 092FH is searched for a match with the
code and control transferred to the associated address.

 Address... 092FH

This table contains the control codes, each with an associated address, recognized by the CHPUT standard routine:

CODE TO FUNCTION
07H 1113H BELL, go beep
08H 0A4CH BS, cursor left
09H 0A71H TAB, cursor to next tab position
0AH 0908H LF, cursor down a row
0BH 0A7FH HOME, cursor to home
0CH 077EH FORMFEED, clear screen and home
0DH 0A81H CR, cursor to leftmost column
1BH 0989H ESC, enter escape sequence
1CH 0A5BH RIGHT, cursor right
1DH 0A4CH LEFT, cursor left
1EH 0A57H UP, cursor up
1FH 0A61H DOWN, cursor down.

- 26 -

 Address... 0953H

This table contains the ESC control codes, each with an associated address, recognized by the CHPUT standard routine:

CODE TO FUNCTION
6AH 077EH ESC,"j", clear screen and home
45H 077EH ESC,"E", clear screen and home
4BH 0AEEH ESC,"K", clear to end of line
4AH 0B05H ESC,"J", clear to end of screen
6CH 0AECH ESC,"l", clear line
4CH 0AB4H ESC,"L", insert line
4DH 0A85H ESC,"M", delete line
59H 0986H ESC,"Y", set cursor coordinates
41H 0A57H ESC,"A", cursor up
42H 0A61H ESC,"B", cursor down
43H 0A44H ESC,"C", cursor right
44H 0A55H ESC,"D", cursor left
48H 0A7FH ESC,"H", cursor home
78H 0980H ESC,"x", change cursor
79H 0983H ESC,"y", change cursor

 Address... 0980H

This routine performs the ESC,"x" operation for the CHPUT standard routine control code processor. ESCCNT is set to
01H to indicate that the next character received is a parameter.

 Address... 0983H

This routine performs the ESC,"y" operation for the CHPUT standard routine control code decoder. ESCCNT is set to
02H to indicate that the next character received is a parameter.

 Address... 0986H

This routine performs the ESC",Y" operation for the CHPUT standard routine control code processor. ESCCNT is set to
04H to indicate that the next character received is a parameter.

 Address... 0989H

This routine performs the ESC operation for the CHPUT standard routine control code processor. ESCCNT is set to
FFH to indicate that the next character received is the second control character.

 Address... 098FH

This is the CHPUT standard routine ESC sequence processor. If ESCCNT contains FFH then the character is the second
control character and control transfers to the control code processor (0919H) to search the ESC code table at 0953H. If
ESCCNT contains 01H then the character is the single parameter of the ESC,"x" sequence. If the parameter is "4" (34H)
then CSTYLE is set to 00H resulting in a block cursor. If the parameter is "5" (35H) then CSRSW is set to 00H making
the cursor normally disabled. If ESCCNT contains 02H then the character is the single parameter in the ESC,"y"
sequence. If the parameter is "4" (34H) then CSTYLE is set to 01H resulting in an underline cursor. If the parameter is
"5" (35H) then CSRSW is set to 01H making the cursor normally enabled. If ESCCNT contains 04H then the character
is the first parameter of the ESC,"Y" sequence and is the row coordinate. The parameter has 1FH subtracted and is
placed in CSRY, ESCCNT is then decremented to 03H. If ESCCNT contains 03H then the character is the second
parameter of the ESC,"Y" sequence and is the column coordinate. The parameter has 1FH subtracted and is placed in
CSRX.

 Address... 09DAH

This routine is used, by the CHGET standard routine for example, to display the cursor character when it is normally
disabled. If CSRSW is non-zero the routine simply terminates with no action, otherwise the cursor is displayed
(09E6H).

 Address... 09E1H

- 27 -

This routine is used, by the CHPUT standard routine for example, to display the cursor character when it is normally
enabled. If CSRSW is zero the routine simply terminates with no action. SCRMOD is checked and, if the screen is in
Graphics Mode or Multicolour Mode, the routine terminates with no action. Otherwise the cursor coordinates are
converted to a physical address in the VDP Name Table and the character read from that location (0BD8H) and saved in
CURSAV. The character's eight byte pixel pattern is read from the VDP Character Pattern Table into the LINWRK
buffer (0BA5H). The pixel pattern is then inverted, all eight bytes if CSTYLE indicates a block cursor, only the bottom
three if CSTYLE indicates an underline cursor. The pixel pattern is copied back to the position for character code 255 in
the VDP Character Pattern Table (0BBEH). The character code 255 is then placed at the current cursor location in the
VDP Name Table (0BE6H) and the routine terminates. This method of generating the cursor character, by using
character code 255, can produce curious effects under certain conditions. These can be demonstrated by executing the
BASIC statement FOR N=1 TO 100: PRINT CHR$(255);:NEXT and then pressing the cursor up key.

 Address... 0A27H

This routine is used, by the CHGET standard routine for example, to remove the cursor character when it is normally
disabled. If CSRSW is non-zero the routine simply terminates with no action, otherwise the cursor is removed (0A33H).

 Address... 0A2EH

This routine is used, by the CHPUT standard routine for example, .to remove the cursor character when it is normally
enabled. If CSRSW is zero the routine simply terminates with no action. .SCRMOD is checked and, if the screen is in
Graphics Mode or Multicolour Mode, the routine terminates with no action. Otherwise the cursor coordinates are
converted to a physical address in the VDP Name Table and the character held in CURSAV written to that location
(0BE6H).

 Address... 0A44H

This routine performs the ESC,"C" operation for the CHPUT standard routine control code processor. If the cursor
column coordinate is already at the rightmost column, determined by LINLEN, then the routine terminates with no
action. Otherwise the column coordinate is incremented and CSRX updated. .

 Address... 0A4CH

This routine performs the BS/LEFT operation for the CHPUT standard routine control code processor. The cursor
column4. ROM BIOS coordinate is decremented and CSRX updated. If the column coordinate has moved beyond the
leftmost position it is set to the rightmost position, from LINLEN, and an UP operation performed.

 Address... 0A55H

This routine performs the ESC,"D" operation for the CHPUT standard routine control code processor. If the cursor
column coordinate is already at the leftmost position then the routine terminates with no action. Otherwise the column
coordinate is decremented and CSRX updated.

 Address... 0A57H

This routine performs the ESC,"A" (UP) operation for the CHPUT standard routine control code processor. If the cursor
row coordinate is already at the topmost position the routine terminates with no action. Otherwise the row coordinate is
decremented and CSRY updated.

 Address... 0A5BH

This routine performs the RIGHT operation for the CHPUT standard routine control code processor. The cursor column
coordinate is incremented and CSRX updated. If the column coordinate has moved beyond the rightmost position,
determined by LINLEN, it is set to the leftmost position (01H) and a DOWN operation performed.

 Address... 0A61H

This routine performs the ESC,"B" (DOWN) operation for the CHPUT standard routine control code processor. If the
cursor row coordinate is already at the lowest position, determined by CRTCNT and CNSDFG (0C32H), then the
routine terminates with no action. Otherwise the row coordinate is incremented and CSRY updated.

- 28 -

 Address... 0A71H

This routine performs the TAB operation for the CHPUT standard routine control code processor. ASCII spaces are
output (08DFH) until CSRX is a multiple of eight plus one (BIOS columns 1, 9, 17, 25, 33).

 Address... 0A7FH

This routine performs the ESC,"H" (HOME) operation for the CHPUT standard routine control code processor, CSRX
and CSRY are simply set to 1,1. The ROM BIOS cursor coordinate system, while functionally identical to that used by
the BASIC Interpreter, numbers the screen rows from 1 to 24 and the columns from 1 to 32/40.

 Address... 0A81H

This routine performs the CR operation for the CHPUT standard routine control code processor, CSRX is simply set to
01H .

 Address... 0A85H

This routine performs the ESC,"M" function for the CHPUT standard routine control code processor. A CR operation is
first performed to set the cursor column coordinate to the leftmost position. The number of rows from the current row to
the bottom of the screen is then determined, if this is zero the current row is simply erased (0AECH). The row count is
first used to scroll up the relevant section of LINTTB, the line termination table, by one byte. It is then used to scroll up
the relevant section of the screen a row at a time. Starting at the row below the current row, each line is copied from the
VDP Name Table into the LINWRK buffer (0BAAH) then copied back to the Name Table one row higher (0BC3H).
Finally the lowest row on the screen is erased (0AECH).

 Address... 0AB4H

This routine performs the ESC,"L" operation for the CHPDT standard routine control code processor. A CR operation is
first performed to set the cursor column coordinate to the leftmost position. The number of rows from the current row to
the bottom of the screen is then determined, if this is zero the current row is simply erased (0AECH). The row count is
first used to scroll down the relevant section of LINTTB, the line termination table, by one byte. It is then used to scroll
down the relevant section of the screen a row at a time. Starting at the next to last row of the screen, each line is copied
from the VDP Name Table into the LINWRK buffer (0BAAH), then copied back to the Name Table one row lower
(0BC3H). Finally the current row is erased (0AECH).

 Address... 0AE3H

This routine is used to perform the DEL operation for the CHPUT standard routine control code processor. A LEFT
operation is first performed. If this cannot be completed, because thecursor is already at the home position, then the
routine terminates with no action. Otherwise a space is written to the VDP Name Table at the cursor's physical location
(0BE6H).

 Address... 0AECH

This routine performs the ESC,"l" operation for the CHPUT standard routine control code processor. The cursor column
coordinate is set to 01H and control drops into the ESC,"K" routine.

 Address... 0AEEH

This routine performs the ESC,"K" operation for the CHPHT standard routine control code processor. The row's entry
in LINTTB, the line termination table, is first made non-zero to indicate that the logical line is not extended (0C29H).
The cursor coordinates are converted to a physical address (0BF2H) in the VDP Name Table and the VDP set up for
writes via the SETWRT standard routine. Spaces are then written directly to the VDP Data Port until the rightmost
column, determined by LINLEN, is reached.

 Address... 0B05H

This routine performs the ESC,"J" operation for the CHPUT standard routine control code processor. An ESC,"K"
operation is performed on successive rows, starting with the current one, until the bottom of the screen is reached.

- 29 -

 Address... 0B15H
 Name...... ERAFNK
 Entry..... None
 Exit...... None
 Modifies.. AF, DE, EI

Standard routine to turn the function key display off. CNSDFG is first zeroed and, if the VDP is in Graphics Mode or
Multicolour Mode, the routine terminates with no further action. If the VDP is in 40x24 Text Mode or 32x24 Text
Mode the last row on the screen is then erased (0AECH).

 Address... 0B26H
 Name...... FNKSB
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, EI

Standard routine to show the function key display if it is enabled. If CNSDFG is zero the routine terminates with no
action, otherwise control drops into the DSPFNK standard routine..

 Address... 0B2BH
 Name...... DSPFNK
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, DE, EI

Standard routine to turn the function key display on. CNSDFG is set to FFH and, if the VDP is in Graphics Mode or
Multicolour Mode, the routine terminates with no further action. Otherwise the cursor row coordinate is checked and, if
the cursor is on the last row of the screen, a LF code (0AH) issued to the OUTDO standard routine to scroll the screen
up. Register pair HL is then set to point to either the unshifted or shifted function strings in the Workspace Area
depending upon whether the SHIFT key is pressed. LINLEN has four subtracted, to allow a minimum of one space
between fields, and is divided by five to determine the field size for each string. Successive characters are then taken
from each function string, checked for graphic headers via the CNVCHR standard routine and placed in the LINWRK
buffer until the string is exhausted or the zone is filled. When all five strings are completed the LINWRK buffer is
written to the last row in the VDP Name Table (0BC3H).

 Address... 0B9CH

This routine is used by the function key display related standard routines. The contents of register A are placed in
CNSDFG then SCRMOD tested and Flag NC returned if the screen is in Graphics Mode or Multicolour Mode.

 Address... 0BA5H

This routine copies eight bytes from the VDP VRAM into the LINWRK buffer, the VRAM physical address is supplied
in register pair HL.

 Address... 0BAAH

This routine copies a complete row of characters, with the length determined by LINLEN, from the VDP VRAM into
the LINWRK buffer. The cursor row coordinate is supplied in register L.

 Address... 0BBEH

This routine copies eight bytes from the LINWRK buffer into the VDP VRAM, the VRAM physical address is supplied
in registerpair HL.

 Address... 0BC3H

This routine copies a complete row of characters, with the length determined by LINLEN, from the LINWRK buffer
into the VDP VRAM. The cursor row coordinate is supplied in register L.

- 30 -

 Address... 0BD8H

This routine reads a single byte from the VDP VRAM into register C. The column coordinate is supplied in register H,
the row coordinate in register L.

 Address... 0BE6H

This routine converts a pair of screen coordinates, the column in register H and the row in register L, into a physical
address in the VDP Name Table. This address is returned in register pair HL. The row coordinate is first multiplied by
thirty-two or forty, depending upon the screen mode, and added to the column coordinate. This is then added to the
Name Table base address, taken from NAMBAS, to produce an initial address. Because of the variable screen width, as
contained in LINLEN, an additional offset has to be added to the initial address to keep the active region roughly
centered within the screen. The difference between the "true" number of charactersper row, thirty-two or forty, and the
current width is halved and then rounded up to produce the left hand offset. For a UK machine, with a thirty-seven
character width in 40x24 Text Mode, this will result in two unused characters on the left hand side and one on the right.
The statement PRINT (41-WID)\2, where WID is any screen width, will display the left hand column offset in 40x24
Text Mode. A complete BASIC program which emulates this routine is given below:

10 CPR=40:NAM=BASE(0):WID=PEEK(&HF3AE)
20 SCRMD=PEEK(&HFCAF):IF SCRMD=0 THEN 40
30 CPR=32:NAM=BASE(5):WID=PEEK(&HF3AF)
40 LH=(CPR+1-WID)\2
50 ADDR=NAM+(ROW-1)*CPR+(COL-1)+LH

This program is designed for the ROW and COL coordinate system used by the ROM BIOS where home is 1,1. Line 50
may be simplified, by removing the "-1" factors, if the BASIC Interpreter's coordinate system is to be used.

 Address... 0C1DH

This routine calculates the address of a row's entry in LINTTB, the line termination table. The row coordinate is
supplied in register L and the address returned in register pair DE.

 Address... 0C29H

This routine makes a row's entry in LINTTB non-zero when entered at 0C29H and zero when entered at 0C2AH. The
row coordinate is supplied in register L.

 Address... 0C32H

This routine returns the number of rows on the screen in register A. It will normally return twenty-four if the function
key display is disabled and twenty-three if it is enabled. Note that the screen size is determined by CRTCNT and may
be modified with a BASIC statement, POKE &HF3B1H,14:SCREEN 0 for example.

 Address... 0C3CH
 Name...... KEYINT
 Entry..... None
 Exit...... None
 Modifies.. EI

Standard routine to process Z80 interrupts, these are generated by the VDP once every 20 ms on a UK machine. The
VDP Status Register is first read and bit 7 checked to ensure that this is a frame rate interrupt, if not the routine
terminates with no action. The contents of the Status Register are saved in STATFL and bit 5 checked for sprite
coincidence. If the Coincidence Flag is active then the relevant entry in TRPTBL is updated (0EF1H). INTCNT, the
"INTERVAL" counter, is then decremented. If this has reached zero the relevant entry in TRPTBL is updated (0EF1H)
and the counter reset with the contents of INTVAL. JIFFY, the "TIME" counter, is then incremented. This counter just
wraps around to zero when it overflows. MUSICF is examined to determine whether any of the three music queues
generated by the "PLAY" statement are active. For each active queue the dequeueing routine (113BH) is called to fetch
the next music packet and write it to the PSG. SCNCNT is then decremented to determine if a joystick and keyboard
scan is required, if not the interrupt handler terminates with no further action. This counter is used to increase
throughput and to minimize keybounce problems by ensuring that a scan is only carried out every three interrupts.
Assuming a scan is required joystick connector 1 is selected and the two Trigger bits read (120CH), followed by the two
Trigger bits from joystick connector 2 (120CH) and the SPACE key from row 8 of the keyboard (1226H). These five

- 31 -

inputs, which are all related to the "STRIG" statement, are combined into a single byte where 0=Pressed, 1=Not
pressed:

7 6 5 4 3 2 1 0
Joy 2 Joy 2 Joy 1 Joy 1 0 0 0 Space
Trg.B Trg.A Trg.B Trg.A

Figure 35: "STRIG" Inputs.

This reading is compared with the previous one, held in TRGFLG, to produce an active transition byte and TRGFLG is
updated with the new reading. The active transition byte is normally zero but contains a 1 in each position where a
transition from unpressed to pressed has occurred. This active transition byte is shifted out bit by bit and the relevant
entry in TRPTBL updated (0EF1H) for each active device. A complete scan of the keyboard matrix is then performed to
identify new key depressions, any found are translated into key codes and placed in KEYBUF (0D12H). If KEYBUF is
found to be empty at the end of this process REPCNT is decremented to see whether the auto-repeat delay has expired,
if not the routine terminates. If the delay period has expired REPCNT is reset with the fast repeat value (60 ms), the
OLDKEY keyboard map is reinitialized and the keyboard scanned again (0D4EH). Any keys which are continuously
pressed will show up as new transitions during this scan. Note that keys will only auto-repeat while an application
program keeps KEYBUF empty by reading characters. The interrupt handler then terminates.

 Address... 0D12H

This routine performs a complete scan of all eleven rows of the keyboard matrix for the interrupt handler. Each of the
eleven rows is read in via the PPI and placed in ascending ' order in NEWKEY. ENSTOP is then checked to see if
warm starts are enabled. If its contents are non-zero and the keys CODE, GRAPH, CTRL and SHIFT are pressed
control transfers to the BASIC Interpreter (409BH) via the CALBAS standard routine. This facility is useful as even a
machine code program can be terminated as long as the interrupt handler is running. The contents of NEWKEY are
compared with the previous scan contained in OLDKEY. If any change at all has occurred REPCNT is loaded with the
initial auto-repeat delay (780 ms). Each row 1, reading from NEWKEY is then compared with the previous one, held in
OLDKEY, to produce an active transition byte and OLDKEY is updated with the new reading. The active transition
byte is normally zero but contains a 1 in each position where a transition from unpressed to pressed has occurred. If the
row contains any transitions these are decoded and placed in KEYBUF as key codes (0D89H). When all eleven rows
have been completed the routine checks whether there are any characters in KEYBUF, by subtracting GETPNT from
PUTPNT, and terminates.

 Address... 0D6AH
 Name...... CHSNS
 Entry..... None
 Exit...... Flag NZ if characters in KEYBUF
 Modifies.. AF, EI

Standard routine to check if any keyboard characters are ready. If the screen is in Graphics Mode or Multicolour Mode
then GETPNT is subtracted from PUTPNT (0D62H) and the routine terminates. If the screen is in 40x24 Text Mode or
32x24 Text Mode the state of the SHIFT key is also examined and the function key display updated, via the DSPFNK
standard routine, if it has changed.

 Address... 0D89H

This routine converts each active bit in a keyboard row transition byte into a key code. A bit is first converted into a key
number determined by its position in the keyboard matrix:

7
(07H)

6
(06H)

5
(05H)

4
(04H)

3
(03H)

2
(02H)

1
(01H)

0
(00H)

Row 0

;
(0FH)

]
(0EH)

[
(0DH)

\
(0CH)

=
(0BH)

-
(0AH)

9
(09H)

8
(08H)

Row 1

B
(17H)

A
(16H)

œ
(15H)

/
(14H)

.
(13H)

,
(12H)

`
(11H)

'
(10H)

Row 2

J
(1FH)

I
(1EH)

H
(1DH)

G
(1CH)

F
(1BH)

E
(1AH)

D
(19H)

C
(18H)

Row3

R
(27H)

Q
(26H)

P
(25H)

O
(24H)

N
(23H)

M
(22H)

L
(21H)

K
(20H)

Row 4

Z
(2FH)

Y
(2EH)

X
(2DH)

W
(2CH)

V
(2BH)

U
(2AH)

T
(29H)

S
(28H)

Row 5

F3
(37H)

F2
(36H)

F1
(35H)

CODE
(34H)

CAP
(33H)

GRAPH
(32H)

CTRL
(31H)

SHIFT
(30H)

Row 6

CR
(3FH)

SEL
(3EH)

BS
(3DH)

STOP
(3CH)

TAB
(3BH)

ESC
(3AH)

F5
(39H)

F4
(38H)

Row 7

RIGHT
(47H)

DOWN
(46H)

UP
(45H)

LEFT
(44H)

DEL
(43H)

INS
(42H)

HOME
(41H)

SPACE
(40H)

Row 8

4
(4FH)

3
(4EH)

2
(4DH)

1
(4CH)

0
(4BH) (4AH) (49H) (48H)

Row 9

.
(57H)

,
(56H)

-
(55H)

9
(54H)

8
(53H)

7
(52H)

6
(51H)

5
(50H)

Row 10

7 6 5 4 3 2 1 0 Column

Figure 36: Key Numbers.

- 32 -

The key number is then con|ed into a key code and placed in KEYBUF (1021H). When all eight possible bits have been
processed the routine terminates.

 Address... 0DA5H

This table contains the key codes of key numbers 00H to 2FH for various combinations of the control keys. A zero
entry in the table means that no key code will be produced when that key is pressed:

7 6 5 4 3 2 1 0
37H 36H 35H 34H 33H 32H 31H 30H Row 0
3BH 5DH 5BH 5CH 3DH 2DH 39H 38H Row 1
62H 61H 9CH 2FH 2EH 2CH 60H 27H Row 2
6AH 69H 68H 67H 66H 65H 64H 63H Row 3
72H 71H 70H 6FH 6EH 6DH 6CH 6BH Row 4

NORMAL

7AH 79H 78H 77H 76H 75H 74H 73H Row 5

7 6 5 4 3 2 1 0
26H 5EH 25H 24H 23H 40H 21H 29H Row 0
3AH 7DH 7BH 7CH 2BH 5FH 28H 2AH Row 1
42H 41H 9CH 3FH 3EH 3CH 7EH 22H Row 2
4AH 49H 48H 47H 46H 45H 44H 43H Row 3
52H 51H 50H 4FH 4EH 4DH 4CH 4BH Row 4

SHIFT

5AH 59H 58H 57H 56H 55H 54H 53H Row 5

7 6 5 4 3 2 1 0
FBH F4H BDH EFH BAH ABH ACH 09H Row 0
06H 0DH 01H 1EH F1H 17H 07H ECH Row 1
11H C4H 9CH 1DH F2H F3H BBH 05H Row 2
C6H DCH 13H 15H 14H CDH C7H BCH Row 3
18H CCH DBH C2H 1BH 0BH C8H DDH Row 4

GRAPH

0FH 19H 1CH CFH 1AH C0H 12H D2H Row 5

7 6 5 4 3 2 1 0
00H F5H 00H 00H FCH FDH 00H 0AH Row 0
04H 0EH 02H 16H F0H 1FH 08H 00H Row 1
00H FEH 9CH F6H AFH AEH F7H 03H Row 2
CAH DFH D6H 10H D4H CEH C1H FAH Row 3
A9H CBH D7H C3H D3H 0CH C9H DEH Row 4

SHIFT
GRAPH

F8H AAH F9H D0H D5H C5H 00H D1H Row 5

7 6 5 4 3 2 1 0
E1H E0H 98H 9BH BFH D9H 9FH EBH Row 0
B7H DAH EDH 9CH E9H EEH 87H E7H Row 1
97H 84H 9CH A7H A6H 86H E5H B9H Row 2
91H A1H B1H 81H 94H 8CH 8BH 8DH Row 3
93H 83H A3H A2H A4H E6H B5H B3H Row 4

CODE

85H A0H 8AH 88H 95H 82H 96H 89H Row 5

7 6 5 4 3 2 1 0
00H 00H 9DH 9CH BEH 9EH ADH D8H Row 0
B6H EAH E8H 00H 00H 00H 80H E2H Row 1
00H 8EH 9CH A8H 00H 8FH E4H B8H Row 2
92H 00H B0H 9AH 99H 00H 00H 00H Row 3
00H 00H E3H 00H A5H 00H B4H B2H Row 4

SHIFT
CODE

00H 00H 00H 00H 00H 90H 00H 00H Row 5

 Address... 0EC5H

Control transfers to this routine, from 0FC3H, to complete decoding of the five function keys. The relevant entry in
FNKFLG is first checked to determine whether the key is associated with an "ON KEY GOSUB" statement. If so, and
provided that CURLIN shows the BASIC Interpreter to be in program mode, the relevant entry in TRPTBL is updated
(0EF1H) and the routine terminates. If the key is not tied to an "ON KEY GOSUB" statement, or if the Interpreter is in
direct mode, the string of characters associated with the function key is returned instead. The key number is multiplied
by sixteen, as each string is sixteen characters long, and added to the starting address of the function key strings in the
Workspace Area. Sequential characters are then taken from the string and placed in KEYBUF (0F55H) until the zero
byte terminator is reached.

 Address... 0EF1H

This routine is used to update a device's entry in TRPTBL when it has produced a BASIC program interrupt. On entry
register pair HL points to the device's status byte in the table. Bit 0 of the status byte is checked first, if the device is not
"ON" then the routine terminates with no action. Bit 2, the event flag, is then checked. If this is already set then the
routine terminates, otherwise it is set to indicate that an event has occurred. Bit 1, the "STOP" flag, is then checked. If
the device is stopped then the routine terminates with no further action. Otherwise ONGSBF is incremented to signal to
the Interpreter Runloop that the event should now be processed.

- 33 -

 Address... 0F06H

This section of the key decoder processes the HOME key only. The state of the SHIFT key is determined via row 6 of
NEWKEY and the key code for HOME (0BH) or CLS (0CH) placed in KEYBUF (0F55H) accordingly.

 Address... 0F10H

This section of the keyboard decoder processes key numbers 30H to 57H apart from the CAP, F1 to F5, STOP and
HOME keys. The key number is simply used to look up the key code in the table at 1033H and this is then placed in
KEYBUF (0F55H).

 Address... 0F1FH

This section of the keyboard decoder processes the DEAD key found on European MSX machines. On UK machines
the key in row 2, column 5 always generates the pound key code (9CH) shown in the table at 0DA5H. On European
machines this table will have the key code FFH in the same locations. This key code only serves as a flag to indicate
that the next key pressed, if it is a vowel, should be modified to produce an accented graphics character. The state of the
SHIFT and CODE keys is determined via row 6 of NEWKEY and one of the following placed in KANAST:
01H=DEAD, 02H=DEAD+SHIFT, 03H=DEAD+CODE, 04H=DEAD+SHIFT+CODE.

 Address... 0F36H

This section of the keyboard decoder processes the CAP key. The current state of CAPST is in|ed and control drops into
the CHGCAP standard routine.

 Address... 0F3DH
 Name...... CHGCAP
 Entry..... A=ON/OFF Switch
 Exit...... None
 Modifies.. AF

Standard routine to turn the Caps Lock LED on or off as determined by the contents of register A: 00H=On, NZ=Off.
The LED is modified using the bit set/reset facility of the PPI Mode Port. As CAPST is not changed this routine does
not affect the characters produced by the keyboard.

 Address... 0F46H

This section of the keyboard decoder processes the STOP key. The state of the CTRL key is determined via row 6 of
NEWKEY and the key code for STOP (04H) or CTRL/STOP (03H) produced as appropriate. If the CTRL/STOP code
is produced it is copied to INTFLG, for use by the ISCNTC standard routine, and then placed in KEYBUF (0F55H). If
the STOP code is produced it is also copied to INTFLG but is not placed in KEYBUF, instead only a click is generated
(0F64H). This means that an application program cannot read the STOP key code via the ROM BIOS standard routines.

 Address... 0F55H

This section of the keyboard decoder places a key code in KEYBUF and generates an audible click. The correct address
in the keyboard buffer is first taken from PUTPNT and the code placed there. The address is then incremented (105BH).
If it has wrapped round and caught up with GETPNT then the routine terminates with no further action as the keyboard
buffer is full. Otherwise PUTPNT is updated with the new address. CLIKSW and CLIKFL are then both checked to
determine whether a click is required. CLIKSW is a general enable/disable switch while CLIKFL is used to prevent
multiple clicks when the function keys are pressed. Assuming a click is required the Key Click output is set via the PPI
Mode Port and, after a delay of 50 æs, control drops into the CHGSND standard routine.

 Address... 0F7AH
 Name...... CHGSND
 Entry..... A=ON/OFF Switch
 Exit...... None
 Modifies.. AF

Standard routine to set or reset the Key Click output via the PPI Mode Port: 00H=Reset, NZ=Set. This audio output is
AC coupled so absolute polarities should not be taken too seriously.

- 34 -

 Address... 0F83H

This section of the keyboard decoder processes key numbers 00H to 2FH. The state of the SHIFT, GRAPH and CODE
keys is determined via row 6 of NEWKEY and combined with the key number to form a look-up address into the table
at 0DA5H. The key code is then taken from the table. If it is zero the routine terminates with no further action, if it is
FFH control transfers to the DEAD key processor (0F1FH). If the code is in the range 40H to 5FH or 60H to 7FH and
the CTRL key is pressed then the corresponding control code is placed in KEYBUF (0F55H). If the code is in the range
01H to 1FH then a graphic header code (01H) is first placed in KEYBUF (0F55H) followed by the code with 40H
added. If the code is in the range 61H to 7BH and CAPST indicates that caps lock is on then it is con|ed to upper case
by subtracting 20H. Assuming that KANAST contains zero, as it always will on UK machines, then the key code is
placed in KEYBUF (0F55H) and the routine terminates. On European MSX machines, with a DEAD key instead of a
pound key, then the key codes corresponding to the vowels a, e, i, o, u may be further modified into graphics codes.

 Address... 0FC3H

This section of the keyboard decoder processes the five function keys. The state of the SHIFT key is examined via row
6 of NEWKEY and five added to the key number if it is pressed. Control then transfers to 0EC5H to complete
processing.

 Address... 1021H

This routine searches the table at 1B97H to determine which group of keys the key number supplied in register C
belongs to. The associated address is then taken from the table and control transferred to that section of the keyboard
decoder. Note that the table itself is actually patched into the middle of the OUTDO standard routine as a result of the
modifications made to the Japanese ROM.

 Address... 1033H

This table contains the key codes of key numbers 30H to 57H other than the special keys CAP, F1 to F5, STOP and
HOME. A zero entry in the table means that no key code will be produced when that key is pressed:

00H 00H 00H 00H 00H 00H 00H 00H Row 6
0DH 18H 08H 00H 09H 1BH 00H 00H Row 7
1CH 1FH 1EH 1DH 7FH 12H 0CH 20H Row 8
34H 33H 32H 31H 30H 00H 00H 00H Row 9
2EH 2CH 2DH 39H 38H 37H 36H 35H Row 10

7 6 5 4 3 2 1 0 Column

 Address... 105BH

 This routine simply zeroes KANAST and then transfers control to 10C2H.

 Address... 1061H

 This table contains the graphics characters which replace the vowels a, e, i, o, u on European machines.

 Address... 10C2H

This routine increments the keyboard buffer pointer, either PUTPNT or GETPNT, supplied in register pair HL. If the
pointer then exceeds the end of the keyboard buffer it is wrapped back to the beginning.

 Address... 10CBH
 Name...... CHGET
 Entry..... None
 Exit...... A=Character from keyboard
 Modifies.. AF, EI

Standard routine to fetch a character from the keyboard buffer. The buffer is first checked to see if already contains a
character (0D6AH). If not the cursor is turned on (09DAH), the buffer checked repeatedly until a character appears
(0D6AH) and then the cursor turned off (0A27H). The character is taken from the buffer using GETPNT which is then
incremented (10C2H).

- 35 -

 Address... 10F9H
 Name...... CKCNTC
 Entry..... None
 Exit...... None
 Modifies.. AF, EI

Standard routine to check whether the CTRL-STOP or STOP keys have been pressed. It is used by the BASIC
Interpreter inside processor-intensive statements, such as "WAIT" and "CIRCLE", to check for program termination.
Register pair HL is first zeroed and then control transferred to the ISCNTC standard routine. When the Interpreter is
running register pair HL normally contains the address of the current character in the BASIC program text. If ISCNTC
is CTRL-STOP terminated this address will be placed in OLDTXT by the "STOP" statement handler (63E6H) for use
by a later "CONT" statement. Zeroing register pair HL beforehand signals to the "CONT" handler that termination
occurred inside a statement and it will issue a "Can't CONTINUE" error if continuation is attempted.

 Address... 1102H
 Name...... WRTPSG
 Entry..... A=Register number, E=Data byte
 Exit...... None
 Modifies.. EI

Standard routine to write a data byte to any of the sixteen PSG registers. The register selection number is written to the
PSG Address Port and the data byte written to the PSG Data Write Port.

 Address... 110EH
 Name...... RDPSG
 Entry..... A=Register number
 Exit...... A=Data byte read from PSG
 Modifies.. A

Standard routine to read a data byte from any of the sixteen PSG registers. The register selection number is written to
the PSG Address Port and the data byte read from the PSG Data Read Port.

 Address... 1113H
 Name...... BEEP
 Entry..... None
 Exit...... None
 Modifies.. AF, BC, E, EI

Standard routine to produce a beep via the PSG. Channel A is set to produce a tone of 1316Hz then enabled with an
amplitude of seven. After a delay of 40 ms control transfers to the GICINI standard routine to reinitialize the PSG.

 Address... 113BH

This routine is used by the interrupt handler to service a music queue. As there are three of these, each feeding a PSG
channel, the queue to be serviced is specified by supplying its number in register A: 0=VOICAQ, 1=VOICBQ and
2=VOICCQ. Each string in a "PLAY" statement is translated into a series of data packets by the BASIC Interpreter.
These are placed in the appropriate queue followed by an end of data byte (FFH). The task of dequeueing the packets,
decoding them and setting the PSG is left to the interrupt handler. The Interpreter is thus free to proceed immediately to
the next statement without having to wait for notes to finish. The first two bytes of any packet specify its byte count and
duration. The three most significant bits of the first byte specify the number of bytes following the header in the packet.
The remainder of the header specifies the event duration in 20 ms units. This duration count determines how long it will
be before the next packet is read from the queue.

7 6 5 4 3 2 1 0
Byte Count Duration (MSB)

Duration (LSB)
Figure 37: Packet Header.

- 36 -

The packet header may be followed by zero or more blocks, in any order, containing frequency or amplitude
information:

7 6 5 4 3 2 1 0
0 0 x x Frequency (MSB)

Frequency (LSB)
Frequency Block

7 6 5 4 3 2 1 0
X 1 x x x x x x

Envelope Frequency (MSB)
Envelope Frequency (LSB)

Envelope Block

7 6 5 4 3 2 1 0
1 x x Mode Amplitude/Shape

Amplitude Block
Figure 38: Packet Block Types.

The routine first locates the current duration counter in the relevant voice buffer (VCBA, VCBB or VCBC) via the
GETVCP standard routine and decrements it. If the counter has reached zero then the next packet must be read from the
queue, otherwise the routine terminates. The queue number is placed in QUEUEN and a byte read fromthe queue
(11E2H). This is then checked to see if it is the endof data mark (FFH), if so the queue terminates (11B0H). Otherwise
the byte count is placed in register C and the duration MSB in the relevant voice buffer. The second byte is read
(11E2H) and the duration LSB placed in the relevant voice buffer. The byte count is then examined, if there are no
bytes to follow the packet header the routine terminates. Otherwise successive bytes are read from the queue, and the
appropriate action taken, until the byte count is exhausted. If a frequency block is found then a second byte is read and
both bytes written to PSG Registers 0 and 1, 2 and 3 or 4 and 5 depending on the queue number. If an amplitude block
is found the Amplitude and Mode bits are written to PSG Registers 8, 9 or 10 depending on the queue number. If the
Mode bit is 1, selecting modulated rather than fixed amplitude, then the byte is also written to PSG Register 13 to set
the envelope shape. If an envelope block is found, or if bit 6 of an amplitude block is set, then a further two bytes are
read from the queue and written to PSG Registers 11 and 12.

 Address... 11B0H

This routine is used when an end of data mark (FFH) is found in one of the three music queues. An amplitude value of
zero is written to PSG Register 8 9 or 10, depending on the queue number, to shut the channel down. The channel's bit
in MUSICF is then reset and control drops into the STRTMS standardroutine.

 Address... 11C4H
 Name...... STRTMS
 Entry..... None
 Exit...... None
 Modifies.. AF, HL

Standard routine used by the "PLAY" statement handler to initiate music dequeueing by the interrupt handler. MUSICF
is first examined, if any channels are already running the routine terminates with no action. PLYCNT is then
decremented, if thereare no more "PLAY" strings queued up the routine terminates. Otherwise the three duration
counters, in VCBA, VCBB and VCBC, are set to 0001H, so that the first packet of the new group will be dequeued at
the next interrupt, and MUSICF is set to 07H to enable all three channels.

 Address... 11E2H

This routine loads register A with the current queue number, from QUEUEN, and then reads a byte from that queue
(14ADH).

 Address... 11EEH
 Name...... GTSTCK
 Entry..... A=Joystick ID (0, 1 or 2)
 Exit...... A=Joystick position code
 Modifies.. AF, B, DE, HL, EI

Standard routine to read the position of a joystick or the four cursor keys. If the supplied ID is zero the state of the
cursor keys is read via PPI Port B (1226H) and con|ed to a position code using the look-up table at 1243H. Otherwise

- 37 -

joystick connector 1 or 2 is read (120CH) and the four direction bits con|ed to a position code using the look-up table at
1233H. The returned position codes are:

 Address... 120CH

This routine reads the joystick connector specified by the contents of register A: 0=Connector 1, 1=Connector 2. The
current contents of PSG Register 15 are read in then written back with the Joystick Select bit appropriately set. PSG
Register 14 is then read into register A (110CH) and the routine terminates.

 Address... 1226H

This routine reads row 8 of the keyboard matrix. The current contents of PPI Port C are read in then written back with
the four Keyboard Row Select bits set for row 8. The column inputs are then read into register A from PPI Port B.

 Address... 1253H
 Name...... GTTRIG
 Entry..... A=Trigger ID (0, 1, 2, 3 or 4)
 Exit...... A=Status code
 Modifies.. AF, BC, EI

Standard routine to check the joystick trigger or space key status. If the supplied ID is zero row 8 of the keyboard
matrix is read (1226H) and con|ed to a status code. Otherwise joystick connector 1 or 2 is read (120CH) and con|ed to a
status code. The selection IDs are:

0=SPACE KEY
1=JOY 1, TRIGGER A
2=JOY 2, TRIGGER A
3=JOY 1, TRIGGER B
4=JOY 2, TRIGGER B

 The value returned is FFH if the relevant trigger is pressed and zero otherwise.

 Address... 1273H
 Name...... GTPDL
 Entry..... A=Paddle ID (1 to 12)
 Exit...... A=Paddle value (0 to 255)
 Modifies.. AF, BC, DE, EI

Standard routine to read the value of any paddle attached to a joystick connector. Each of the six input lines (four
direction plus two triggers) per connector can support a paddle so twelve are possible altogether. The paddles attached
to joystick connector 1 have entry identifiers 1, 3, 5, 7, 9 and 11. Those attached to joystick connector 2 have entry
identifiers 2, 4, 6, 8, 10 and 12. Each paddle is basically a one-shot pulse generator, the length of the pulse being
controlled by a variable resistor. A start pulse is issued to the specified joystick connector via PSG Register 15. A count
is then kept of how many times PSG Register 14 has to be read until the relevant input times out. Each unit increment
represents an approximate period of 12 æs on an MSX machine with one wait state.

 Address... 12ACH
 Name...... GTPAD
 Entry..... A=Function code (0 to 7)
 Exit...... A=Status or value
 Modifies.. AF, BC, DE, HL, EI

Standard routine to access a touchpad attached to either of the joystick connectors. Available functions codes for
joystick connector 1 are:

0=Return Activity Status
1=Return "X" coordinate
2=Return "Y" coordinate
3=Return Switch Status

8

46

7

5

3

21

0

- 38 -

Function codes 4 to 7 have the same effect with respect to joystick connector 2. The Activity Status function returns
FFH if the Touchpad is being touched and zero otherwise. The Switch Status function returns FFH if the switch is being
pressed and zero otherwise. The two coordinate request functions return the coordinates of the last location touched.
These coordinates are actually stored in the Workspace Area variables PADX and PADY when a call with function
code 0 or 4 detects activity. Note that these variables are shared by both joystick connectors.

 Address... 1384H
 Name...... STMOTR
 Entry..... A=Motor ON/OFF code
 Exit...... None
 Modifies.. AF

Standard routine to turn the cassette motor relay on or off via PPI Port C: 00H=Off, 01H=On, FFH=Reverse current
state.

 Address... 1398H
 Name...... NMI
 Entry..... None
 Exit...... None
 Modifies.. None

Standard routine to process a Z80 Non Maskable Interrupt, simply returns on a standard MSX machine.

 Address... 139DH
 Name...... INIFNK
 Entry..... None
 Exit...... None
 Modifies.. BC, DE, HL

Standard routine to initialize the ten function key strings to their power-up values. The one hundred and sixty bytes of
data commencing at 13A9H are copied to the FNKSTR buffer in the Workspace Area.

 Address... 13A9H

This area contains the power-up strings for the ten function keys. Each string is sixteen characters long, unused
positions contain zeroes:

F1 to F5 F6 to F10
color
auto
goto
list
run

color 15,4,4 CR
cload"
cont CR
list. CR UP UP
run CLS CR

 Address... 1449H
 Name...... RDVDP
 Entry..... None
 Exit...... A=VDP Status Register contents
 Modifies.. A

Standard routine to input the contents of the VDP Status Register by reading the Command Port. Note that reading the
VDP Status Register will clear the associated flags and may affect the interrupt handler.

 Address... 144CH
 Name...... RSLREG
 Entry..... None
 Exit...... A=Primary Slot Register contents
 Modifies.. A

Standard routine to input the contents of the Primary slotRegister by reading PPI Port A.

- 39 -

 Address... 144FH
 Name...... WSLREG
 Entry..... A=Value to write
 Exit...... None
 Modifies.. None

Standard routine to set the Primary Slot Register by writing to PPI Port A.

 Address... 1452H
 Name...... SNSMAT
 Entry..... A=Keyboard row number
 Exit...... A=Column data of keyboard row
 Modifies.. AF, C, EI

Standard routine to read a complete row of the keyboard matrix. PPI Port C is read in then written back with the row
number occupying the four Keyboard Row Select bits. PPI Port B is then read into register A to return the eight column
inputs. The four miscellaneous control outputs of PPI Port C are unaffected by this routine.

 Address... 145FH
 Name...... ISFLIO
 Entry..... None
 Exit...... Flag NZ if file I/O active
 Modifies.. AF

Standard routine to check whether the BASIC Interpreter is currently directing its input or output via an I/O buffer. This
is determined by examining PTRFIL. It is normally zero but will contain a buffer FCB (File Control Block) address
while statements such as "PRINT#1", "INPUT#1", etc. are being executed by the Interpreter.

 Address... 146AH
 Name...... DCOMPR
 Entry..... HL, DE
 Exit...... Flag NC if HL>DE, Flag Z if HL=DE, Flag C if HL<DE
 Modifies.. AF

Standard routine used by the BASIC Interpreter to check the elative values of register pairs HL and DE.

 Address... 1470H
 Name...... GETVCP
 Entry..... A=Voice number (0, 1, 2)
 Exit...... HL=Address in voice buffer
 Modifies.. AF, HL

Standard routine to return the address of byte 2 in the specified voice buffer (VCBA, VCBB or VCBC).

 Address... 1474H
 Name...... GETVC2
 Entry..... L=Byte number (0 to 36)
 Exit...... HL=Address in voice buffer
 Modifies.. AF, HL

Standard routine to return the address of any byte in the voice buffer (VCBA, VCBB or VCBC) specified by the voice
number in VOICEN.

 Address... 148AH
 Name...... PHYDIO
 Entry..... None
 Exit...... None
 Modifies.. None

Standard routine for use by Disk BASIC, simply returns on standard MSX machines.

- 40 -

 Address... 148EH
 Name...... FORMAT
 Entry..... None
 Exit...... None
 Modifies.. None

Standard routine for use by Disk BASIC, simply returns on standard MSX machines.

 Address... 1492H
 Name...... PUTQ
 Entry..... A=Queue number, E=Data byte
 Exit...... Flag Z if queue full
 Modifies.. AF, BC, HL

Standard routine to place a data byte in one of the three music queues. The queue's get and put positions are first taken
from QUETAB (14FAH). The put position is temporarily incremented and compared with the get position, if they are
equal the routine terminates as the queue is full. Otherwise the queue's address is taken from QUETAB and the put
position added to it. The data byte is placed at this location in the queue, the put position is incremented and the routine
terminates. Note that the music queues are circular, if the get or put pointers reach the last position in the queue they
wrap around back to the start.

 Address... 14ADH

This routine is used by the interrupt handler to read a byte from one of the three music queues. The queue number is
supplied in register A, the data byte is returned in register A and the routine returns Flag Z if the queue is empty. The
queue's get and put positions are first taken from QUETAB (14FAH). If the putback flag is active then the data byte is
taken from QUEBAK and the routine terminates (14D1H), this facility is unused in the current versions of the MSX
ROM. The put position is then compared with the get position, if they are equal the routine terminates as the queue is
empty. Otherwise the queue's address is taken from QUETAB and the get position added to it. The data byte is read
from this location in the queue, the get position is incremented and the routine terminates.

 Address... 14DAH

This routine is used by the GICINI standard routine to initialize a queue's control block in QUETAB. The control block
is first located in QUETAB (1504H) and the put, get and putback bytes zeroed. The size byte is set from register B and
the queue address from register pair DE.

 Address... 14EBH
 Name...... LFTQ
 Entry..... A=Queue number
 Exit...... HL=Free space left in queue
 Modifies.. AF, BC, HL

Standard routine to return the number of free bytes left in a music queue. The queue's get and put positions are taken
from QUETAB (14FAH) and the free space determined by subtracting put from get.

 Address... 14FAH

This routine returns a queue's control parameters from QUETAB, the queue number is supplied in register A. The
control block is first located in QUETAB (1504H), the put position is then placed in register B, the get position in
register C and the putback flag in register A.

 Address... 1504H

This routine locates a queue's control block in QUETAB. The queue number is supplied in register A and the control
block address returned in register pair HL. The queue number is simply multiplied by six, as there are six bytes per
block, and added to the address of QUETAB as held in QUEUES.

 Address... 1510H
 Name...... GRPPRT
 Entry..... A=Character
 Exit...... None
 Modifies.. EI

- 41 -

Standard routine to display a character on the screen in either Graphics Mode or Multicolour Mode, it is functionally
equivalent to the CHPUT standard routine The CNVCHR standard routine is first used to check for a graphic character,
if the character is a header code (01H) then the routine terminates with no action. If the character is a con|ed graphic one
then the control code decoding section is skipped. Otherwise the character is checked to see if it is a control code. Only
the CR code (0DH) is recognized (157EH), all other characters smaller than 20H are ignored. Assuming the character is
displayable its eight byte pixel pattern is copied from the ROM character set into the PATWRK buffer (0752H) and
FORCLR copied to ATRBYT to set its colour. The current graphics coordinates are then taken from GRPACX and
GRPACY and used to set the current pixel physical address via the SCALXY and MAPXYC standard routines. The
eight byte pattern in PATWRK is processed a byte at a time. At the start of each byte the current pixel physical address
is obtained via the FETCHC standard routine and saved. The eight bits are then examined in turn. If the bit is a 1 the
associated pixel is set by the SETC standard routine, if it is a 0 no action is taken. After each bit the current pixel
physical address is moved right (16ACH). When the byte is finished, or the right hand edge of the screen is reached, the
initial current pixel physical address is restored and moved down one position by the TDOWNC standard routine. When
the pattern is complete, or the bottom of the screen has been reached, GRPACX is updated. In Graphics Mode its value
is increased by eight, in Multicolour Mode by thirty-two. If GRPACX then exceeds 255, the right hand edge of the
screen, a CR operation is performed (157EH).

 Address... 157EH

This routine performs the CR operation for the GRPPRT standard routine, this code functions as a combined CR,LF.
GRPACX is zeroed and eight or thirty-two, depending on the screen mode, added to GRPACY. If GRPACY then
exceeds 191, the bottom of the screen, it is set to zero. GRPACX and GRPACY may be manipulated directly by an
application program to compensate for the limited number of control functions available.

 Address... 1599B
 Name...... SCALXY
 Entry..... BC=X coordinate, DE=Y coordinate
 Exit...... Flag NC if clipped
 Modifies.. AF

Standard routine to clip a pair of graphics coordinates if necessary. The BASIC Interpreter can produce coordinates in
the range -32768 to +32767 even though this far exceeds the actual screen size. This routine modifies excessive
coordinate values to fit within the physically realizable range. If the X coordinate is greater than 255 it is set to 255, if
the Y coordinate is greater than 191 it is set to 191. If either coordinate is negative (greater than 7FFFH) it is set to zero.
Finally if the screen is in Multicolour Mode both coordinates are divided by four as required by the MAPXYC standard
routine.

 Address... 15D9H

This routine is used to check the current screen mode, it returns Flag Z if the screen is in Graphics Mode.

 Address... 15DFH
 Name...... MAPXYC
 Entry..... BC=X coordinate, DE=Y coordinate
 Exit...... None
 Modifies.. AF, D, HL

Standard routine to con| a graphics coordinate pair into the current pixel physical address. The location in the Character
Pattern Table of the byte containing the pixel is laced in CLOC. The bit mask identifying the pixel within that byte is
placed in CMASK. Slightly different conversion methods are used for Multicolour Mode and Graphics Mode,
equivalent programs in BASIC are:

 Multicolour Mode

 10 INPUT"X,Y Coordinates";X,Y
 20 X=X\4:Y-Y\4
 30 A=(Y\8)*256+(Y AND 7)+(X*4 AND &HF8)
 40 PRINT"ADDR=";HEX$(BASE(17)+A);"H ";
 50 IF X MOD 2=0 THEN MS="11110000" ELSE MS="00001111"
 60 PRINT"MASK=";M$
 70 GOTO 10

- 42 -

 Graphics Mode

 10 INPUT"X,Y Coordinates";X,Y
 20 A=(Y\8)*256+(Y AND 7)+(X AND &HF8)
 30 PRINT"ADDR=";HEX$(Base(12)+A);"H ";
 40 RESTORE 100
 50 FOR N=0 TO (X AND 7):READ M$: NEXT N
 60 PRINT"MASK=";M$
 70 GOTO 10
 100 DATA 10000000
 110 DATA 01000000
 120 DATA 00100000
 130 DATA 00010000
 140 DATA 00001000
 150 DATA 00000100
 160 DATA 00000010
 170 DATA 00000001

The allowable input range for both programs is X=0 to 255 and Y=0 to 191. The data statements in the Graphics Mode
program correspond to the eight byte mask table commencing at 160BH in the MSX ROM. Line 20 in the Multicolour
Mode program actually corresponds to the division by four in the SCALXY standard routine. It is included to make the
coordinate system consistent for both programs.

 Address... 1639H
 Name...... FETCHC
 Entry..... None
 Exit...... A=CMASK, HL=CLOC
 Modifies.. A, HL

Standard routine to return the current pixel physical address, register pair HL is loaded from CLOC and register A from
CMASK.

 Address... 1640H
 Name...... STOREC
 Entry..... A=CMASK, HL=CLOC
 Exit...... None
 Modifies.. None

Standard routine to set the current pixel physical address, register pair HL is copied to CLOC and register A is copied to
CMASK.

 Address... 1647H
 Name...... READC
 Entry..... None
 Exit...... A=Colour code of current pixel
 Modifies.. AF, EI

Standard routine to return the colour of the current pixel. The VRAM physical address is first obtained via the FETCHC
standard routine. If the screen is in Graphics Mode the byte pointed to by CLOC is read from the Character Pattern
Table via the RDVRM standard routine. The required bit is then isolated by CMASK and used to select either the upper
or lower four bits of the corresponding entry in the Colour Table. If the screen is in Multicolour Mode the byte pointed
to by CLOC is read from the Character Pattern Table via the RDVRM standard routine. CMASK is then used to select
either the upper or lower four bits of this byte. The value returned in either case will be a normal VDP colour code from
zero to fifteen.

 Address... 1676H
 Name...... SETATR
 Entry..... A=Colour code
 Exit...... Flag C if illegal code
 Modifies.. Flags

Standard routine to set the graphics ink colour used by the SETC and NSETCX standard routines. The colour code,
from zero to fifteen, is simply placed in ATRBYT.

- 43 -

 Address... 167EH
 Name...... SETC
 Entry..... None
 Exit...... None
 Modifies.. AF, EI

Standard routine to set the current pixel to any colour, the colour code is taken from ATRBYT. The pixel's VRAM
physical address is first obtained via the FETCHC standard routine. In Graphics Mode both the Character Pattern Table
and Colour Table are then modified (186CH). In Multicolour Mode the byte pointed to by CLOC is read from the
Character Pattern Table by the RDVRM standard routine. The contents of ATRBYT are then placed in the upper or
lower four bits, as determined by CMASK, and the byte written back via the WRTVRM standard routine

 Address... 16ACH

This routine moves the current pixel physical address one position right. If the right hand edge of the screen is exceeded
it returns with Flag C and the physical address is unchanged. In Graphics Mode CMASK is first shifted one bit right, if
the pixel still remains within the byte the routine terminates. If CLOC is at the rightmost character cell (LSB=F8H to
FFH) then the routine terminates with Flag C (175AH). Otherwise CMASK is set to 80H, the leftmost pixel, and 0008H
added to CLOC. In Multicolour Mode control transfers to a separate routine (1779H).

 Address... 16C5H
 Name...... RIGHTC
 Entry..... None
 Exit...... None
 Modifies.. AF

Standard routine to move the current pixel physical address one position right. In Graphics Mode CMASK is first
shifted one bit right, if the pixel still remains within the byte the routine terminates. Otherwise CMASK is set to 80H,
the leftmost pixel, and 0008H added to CLOC. Note that incorrect addresses will be produced if the right hand edge of
the screen is exceeded. In Multicolour Mode control transfers to a separate routine (178BH).

 Address... 16D8H

This routine moves the current pixel physical address one position left. If the left hand edge of the screen is exceeded it
returns Flag C and the physical address is unchanged. In Graphics Mode CMASK is first shifted one bit left, if the pixel
still remains within the byte the routine terminates. If CLOC is at the leftmost character cell (LSB=00H to 07H) then the
routine terminates with Flag C (175AH). Otherwise CMASK is set to 01H, the rightmost pixel, and 0008H subtracted
from CLOC. In Multicolour Mode control transfers to a separate routine (179CH).

 Address... 16EEH
 Name...... LEFTC
 Entry..... None
 Exit...... None
 Modifies.. AF

Standard routine to move the current pixel physical address one position left. In Graphics Mode CMASK is first shifted
one bit left, if the pixel still remains within the byte the routine terminates. Otherwise CMASK is set to 01H, the
leftmost pixel, and 0008H subtracted from CLOC. Note that incorrect addresses will be produced if the left hand edge
of the screen is exceeded. In Multicolour Mode control transfers to a separate routine (17ACH).

 Address... 170AH
 Name...... TDOWNC
 Entry..... None
 Exit...... Flag C if off screen
 Modifies.. AF

Standard routine to move the current pixel physical address one position down. If the bottom edge of the screen is
exceeded it returns Flag C and the physical address is unchanged. In Graphics Mode CLOC is first incremented, if it
still remains within an eight byte boundary the routine terminates. If CLOC was in the bottom character row
(CLOC>=1700H) then the routine terminates with Flag C (1759H). Otherwise 00F8H is added to CLOC. In
Multicolour Mode control transfers to a separate routine (17C6H).

- 44 -

 Address... 172AH
 Name...... DOWNC
 Entry..... None
 Exit...... None
 Modifies.. AF

Standard routine to move the current pixel physical address one position down. In Graphics Mode CLOC is first
incremented, if it still remains within an eight byte boundary the routine terminates. Otherwise 00F8H is added to
CLOC. Note that incorrect addresses will be produced if the bottom edge of the screen is exceeded. In Multicolour
Mode control transfers to a separate routine (17DCH).

 Address... 173CH
 Name...... TUPC
 Entry..... None
 Exit...... Flag C if off screen
 Modifies.. AF

Standard routine to move the current pixel physical address one position up. If the top edge of the screen is exceeded it
returns with Flag C and the physical address is unchanged. In Graphics Mode CLOC is first decremented, if it still
remains within an eight byte boundary the routine terminates. If CLOC was in the top character row (CLOC<0100H)
then the routine terminates with Flag C. Otherwise 00F8H is subtracted from CLOC. In Multicolour Mode control
transfers to a separate routine (17E3H).

 Address... 175DH
 Name...... UPC
 Entry..... None
 Exit...... None
 Modifies.. AF

Standard routine to move the current pixel physical address one position up. In Graphics Mode CLOC is first
decremented, if it still remains within an eight byte boundary the routine terminates. Otherwise 00F8H is subtracted
from CLOC. Note that incorrect addresses will be produced if the top edge of the screen is exceeded. In Multicolour
Mode control transfers to a separate routine (17F8H).

 Address... 1779H

This is the Multicolour Mode version of the routine at 16ACH. It is identical to the Graphics Mode version except that
CMASK is shifted four bit positions right and becomes F0H if a cell boundary is crossed.

 Address... 178BH

This is the Multicolour Mode version of the RIGHTC standard routine. It is identical to the Graphics Mode version
except that CMASK is shifted four bit positions right and becomes F0H if a cell boundary is crossed.

 Address... 179CH

This is the Multicolour Mode version of the routine at 16D8H. It is identical to the Graphics Mode version except that
CMASK is shifted four bit positions left and becomes 0FH if a cell boundary is crossed.

 Address... 17ACH

This is the Multicolour Mode version of the LEFTC standard routine. It is identical to the Graphics Mode version
except that CMASK is shifted four bit positions left and becomes 0FH if a cell boundary is crossed.

 Address... 17C6H

This is the Multicolour Mode version of the TDOWNC standard routine. It is identical to the Graphics Mode version
except that the bottom boundary address is 0500H instead of 1700H. There is a bug in this routine which will cause it to
behave unpredictably if MLTCGP, the Character Pattern Table base address, is changed from its normal value of zero.
There should be an EX DE,HL instruction inserted at address 17CEH. If the Character Pattern Table base is increased
the routine will think it has reached the bottom of the screen when it actually has not. This routine is used by the
"PAINT" statement so the following demonstrates the fault:

- 45 -

 10 BASE(17)=&H1000
 20 SCREEN 3
 30 PSET(200,0)
 40 DRAW"D180L100U180R100"
 50 PAINT(150,90)
 60 GOTO 60

 Address... 17DCH

This is the Multicolour Mode version of the DOWNC standard routine, it is identical to the Graphics Mode version.

 Address... 17E3H

This is the Multicolour Mode version of the TUPC standard routine. It is identical to the Graphics Mode version except
that is has a bug as above, this time there should be an EX DE,HL instruction at address 17EBH. If the Character
Pattern Table base address is increased the routine will think it is within the table when it has actually exceeded the top
edge of the screen. This may be demonstrated by removing the "R100" part of Line 40 in the previous program.

 Address... 17F8H

This is the Multicolour Mode version of the UPC standard routine, it is identical to the Graphics Mode version.

 Address... 1809H
 Name...... NSETCX
 Entry..... HL=Pixel fill count
 Exit...... None
 Modifies.. AF, BC, DE, HL, EI

Standard routine to set the colour of multiple pixels horizontally rightwards from the current pixel physical address.
Although its function can be duplicated by the SETC and RIGHTC standard routines this would result in significantly
slower operation. The supplied pixel count should be chosen so that the right-hand edge of the screen is not passed as
this will produce anomalous behaviour. The current pixel physical address is unchanged by this routine. In Graphics
Mode CMASK is first examined to determine the number of pixels to the right within the current character cell.
Assuming the fill count is large enough these are then set (186CH). The remaining fill count is divided by eight to
determine the number of whole character cells. Successive bytes in the Character Pattern Table are then zeroed and the
corresponding bytes in the Colour Table set from ATRBYT to fill these whole cells. The remaining fill count is then
con|ed to a bit mask, using the seven byte table at 185DH, and these pixels are set (186CH). In Multicolour Mode
control transfers to a separate routine(18BBH).

 Address... 186CH

This routine sets up to eight pixels within a cell to a specified colour in Graphics Mode. ATRBYT contains the colour
code, register pair HL the address of the relevant byte in the Character Pattern Table and register A a bit mask,
11100000 for example, where every 1 specifies a bit to be set. If ATRBYT matches the existing 1 pixel colour in the
corresponding Colour Table byte then each specified bit is set to 1 in the Character Pattern Table byte. If ATRBYT
matches the existing 0 pixel colour in the corresponding Colour Table byte then each specified bit is set to 0 in the
Character Pattern Table byte. If ATRBYT does not match either of the existing colours in the Colour Table Byte then
normally each specified bit is set to 1 in the Character Pattern Table byte and the 1 pixel colour changed in the Colour
Table byte. However if this would result in all bits being set to 1 in the Character Pattern Table byte then each specified
bit is set to 0 and the 0 pixel colour changed in the Colour Table byte.

 Address... 18BBH

This is the Multicolour Mode version of the NSETCX standard routine. The SETC and RIGHTC standard routines are
called until the fill count is exhausted. Speed of operation is not so important in Multicolour Mode because of the lower
screen resolution and the consequent reduction in the number of operations required.

- 46 -

 Address... 18C7H
 Name...... GTASPC
 Entry..... None
 Exit...... DE=ASPCT1, HL=ASPCT2
 Modifies.. DE, HL

Standard routine to return the "CIRCLE" statement default aspect ratios.

 Address... 18CFH
 Name...... PNTINI
 Entry..... A=Boundary colour (0 to 15)
 Exit...... Flag C if illegal colour
 Modifies.. AF

Standard routine to set the boundary colour for the "PAINT" statement. In Multicolour Mode the supplied colour code
is placed in BDRATR. In Graphics Mode BDRATR is copied from ATRBYT as it is not possible to have separate paint
and boundary colours.

 Address... 18E4H
 Name...... SCANR
 Entry..... B=Fill switch, DE=Skip count
 Exit...... DE=Skip remainder, HL=Pixel count
 Modifies.. AF, BC, DE, HL, EI

Standard routine used by the "PAINT" statement handler to search rightwards from the current pixel physical address
until a colour code equal to BDRATR is found or the edge of the screen is reached. The terminating position becomes
the current pixel physical address and the initial position is returned in CSAVEA and CSAVEM. The size of the
traversed region is returned in register pair HL and FILNAM+1. The traversed region is normally filled in but this can
be inhibited, in Graphics Mode only, by using an entry parameter of zero in register B. The skip count in register pair
DE determines the maximum number of pixels of the required colour that may be ignored from the initial starting
position. This facility is used by the "PAINT" statement handler to search for gaps in a horizontal boundary blocking its
upward progress.

 Address... 197AH
 Name...... SCANL
 Entry..... None
 Exit...... HL=Pixel count
 Modifies.. AF, BC, DE, HL, EI

Standard routine to search leftwards from the current pixel physical address until a colour code equal to BDRATR is
found or the edge of the screen is reached. The terminating position becomes the current pixel physical address and the
size of the traversed region is returned in register pair HL. The traversed region is always filled in.

 Address... 19C7H

This routine is used by the SCANL and SCANR standard routines to check the current pixel's colour against the
boundary colour in BDRATR.

 Address... 19DDH
 Name...... TAPOOF
 Entry..... None
 Exit...... None
 Modifies.. EI

Standard routine to stop the cassette motor after data has been written to the cassette. After a delay of 550 ms, on MSX
machines with one wait state, control drops into the TAPIOF standard routine.

 Address... 19E9H
 Name...... TAPIOF
 Entry..... None
 Exit...... None
 Modifies.. EI

- 47 -

Standard routine to stop the cassette motor after data has been read from the cassette. The motor relay is opened via the
PPI Mode Port. Note that interrupts, which must be disabled during cassette data transfers for timing reasons, are
enabled as this routine terminates.

 Address... 19F1H
 Name...... TAPOON
 Entry..... A=Header length switch
 Exit...... Flag C if CTRL-STOP termination
 Modifies.. AF, BC, HL, DI

Standard routine to turn the cassette motor on, wait 550 ms for the tape to come up to speed and then write a header to
thecassette. A header is a burst of HI cycles written in front of every data block so the baud rate can be determined
when the data is read back. The length of the header is determined by the contents of register A: 00H=Short header,
NZ=Long header. The BASIC cassette statements "SAVE", "CSAVE" and "BSAVE" all generate a long header at the
start of the file, in front of the identification block, and thereafter use short headers between data blocks. The number of
cycles in the header is also modified by the current baud rate so as to keep its duration constant:

 1200 Baud SHORT ... 3840 Cycles ... 1.5 Seconds
 1200 Baud LONG ... 15360 Cycles ... 6.1 Seconds
 2400 Baud SHORT ... 7936 Cycles ... 1.6 Seconds
 2400 Baud LONG ... 31744 Cycles ... 6.3 Seconds

After the motor has been turned on and the delay has expired the contents of HEADER are multiplied by two hundred
and fiftysix and, if register A is non-zero, by a further factor of four to produce the cycle count. HI cycles are then
generated (1A4DH) until the count is exhausted whereupon control transfers to the BREAKX standard routine. Because
the CTRL-STOP key is only examined at termination it is impossible to break out part way through this routine.

 Address... 1A19H
 Name...... TAPOUT
 Entry..... A=Data byte
 Exit...... Flag C if CTRL-STOP termination
 Modifies.. AF, B, HL

Standard routine to write a single byte of data to the cassette. The MSX ROM uses a software driven FSK (Frequency
Shift Keyed) method for storing information on the cassette. At the 1200 baud rate this is identical to the Kansas City
Standard used by the BBC for the distribution of BASICODE programs. At 1200 baud each 0 bit is written as one
complete 1200 Hz LO cycle and each 1 bit as two complete 2400 Hz HI cycles. The data rate is thus constant as 0 and 1
bits have the same duration. When the 2400 baud rate is selected the two frequencies change to 2400 Hz and 4800 Hz
but the format is otherwise unchanged. A byte of data is written with a 0 start bit (1A50H), eight data bits with the least
significant bit first, and two 1 stop bits (1A40H). At the 1200 baud rate a single byte will have a nominal duration of 11
x 833 æs = 9.2 ms. After the stop bits have been written control transfers to the BREAKX standard routine to check the
CTRL-STOP key. The byte 43H is shown below as it would be written to cassette:

 ÚÄ¿Ú¿Ú¿Ú¿Ú¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿Ú¿Ú¿ ÚÄ¿Ú¿Ú¿Ú¿Ú¿
 ³ ³³³³³³³³³ ³ ³ ³ ³ ³ ³ ³ ³³³³³ ³ ³³³³³³³³³
 ÄÄÙ ÀÙÀÙÀÙÀÙÀÄÙ ÀÄÙ ÀÄÙ ÀÄÙ ÀÙÀÙÀÄÙ ÀÙÀÙÀÙÀÙÀ
 ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
 START 0 1 2 3 4 5 6 7 STOP STOP

 1 = two "short" transitions (as STOP BITS)
 0 = one "long" transition (as START BIT)

Figure 39: Cassette Data Byte

- 48 -

It is important not to leave too long an interval between bytes when writing data as this will increase the error rate. An
inter-byte gap of 80 æs, for example, produces a read failure rate of approximately twelve percent. If a substantial
amount of processing is required between each byte then buffering should be used to lump data into headered blocks.
The BASIC "SAVE" format is of this type.

 Address... 1A39H

This routine writes a single LO cycle with a length of approximately 816 æs to the cassette. The length of each half of
the cycle is taken from LOW and control transfers to the general cycle generator (1A50H).

 Address... 1A40H

This routine writes two HI cycles to the cassette. The first cycle is generated (1A4DH) followed by a 17 æs delay and
then the second cycle (1A4DH).

 Address... 1A4DH

This routine writes a single HI cycle with a length of approximately 396 æs to the cassette. The length of each half of
the cycle is taken from HIGH and control drops into the general
cycle generator.

 Address... 1A50H

This routine writes a single cycle to the cassette. The length of the cycle's first half is supplied in register L and its
second half in register H. The first length is counted down and then the Cas Out bit set via the PPI Mode Port. The
second length is counted down and the Cas Out bit reset. On all MSX machines the Z80 runs at a clock frequency of
3.579545 MHz (280 ns) with one wait state during the M1 cycle. As this routine counts every 16T states each unit
increment in the length count represents a period of 4.47 æs. There is also a fixed overhead of 20.7 æs associated with
the routine whatever the length count.

 Address... 1A63H
 Name...... TAPION
 Entry..... None
 Exit...... Flag C if CTRL-STOP termination
 Modifies.. AF, BC, DE, HL, DI

Standard routine to turn the cassette motor on, read the cassette until a header is found and then determine the baud rate.
Successive cycles are read from the cassette and the length of each one measured (1B34H). When 1,111 cycles have
been found with less than 35 æs variation in their lengths a header has been located. The next 256 cycles are then read
(1B34H) and averaged to determine the cassette HI cycle length. This figure is multiplied by 1.5 and placed in
LOWLIM where it defines the minimum acceptable length of a 0 start bit. The HI cycle length is placed in WINWID
and will be used to discriminate between LO and HI cycles.

 Address... 1ABCH
 Name...... TAPIN
 Entry..... None
 Exit...... A=Byte read, Flag C if CTRL-STOP or I/O error
 Modifies.. AF, BC, DE, L

Standard routine to read a byte of data from the cassette. The cassette is first read continuously until a start bit is found.
This is done by locating a negative transition, measuring the following cycle length (1B1FH) and comparing this to see
if it is greater than LOWLIM. Each of the eight data bits is then read by counting the number of transitions within a
fixed period of time (1B03H). If zero or one transitions are found it is a 0 bit, if two or three are found it is a 1 bit. If
more than three transitions are found the routine terminates with Flag C as this is presumed to be a hardware error of
some sort. After the value of each bit has been determined a further one or two transitions are read (1B23H) to retain
synchronization. With an odd transition count one more will be read, with an even transition count two more.

 Address... 1B03H

This routine is used by the TAPIN standard routine to count the number of cassette transitions within a fixed period of
time. The window duration is contained in WINWID and is approximately 1.5 times the length of a HI cycle as shown
below:

- 49 -

|-- window --|

¯| |¯¯¯¯¯¯¯|
 | | | LO Cycle
 | | |
 |_______| |_

¯| |¯¯¯| |¯¯¯|
 | | | | | HI Cycles
 | | | | |
 |___| |___| |_

Figure 40: Cassette Window.

The Cas Input bit is continuously sampled via PSG Register 14 and compared with the previous reading held in register
E. Each time a change of state is found register C is incremented. The sampling rate is once every 17.3 æs so the value
in WINWID, which was determined by the TAPION standard routine with a count rate of 11.45 æs, is effectively
multiplied one and a half times.

 Address... 1B1FH

This routine measures the time to the next cassette input transition. The Cassette Input bit is continuously sampled via
PSG Register 14 until it changes from the state supplied in register E. The state flag is then in|ed and the duration count
returned in register C, each unit increment represents a period of 11.45 æs.

 Address... 1B34H

This routine measures the length of a complete cassette cycle from negative transition to negative transition. The
Cassette Input bit is sampled via PSG Register 14 until it goes to zero. The transition flag in register E is set to zero and
the time to the positive transition measured (1B23H). The time to the negative transition is then measured (1B25H) and
the total returned in register C.

 Address... 1B45H
 Name...... OUTDO
 Entry..... A=Character to output
 Exit...... None
 Modifies.. EI

Standard routine used by the BASIC Interpreter to output a character to the current device. The ISFLIO standard routine
is first used to check whether output is currently directed to an I/O buffer, if so control transfers to the sequential output
driver (6C48H) via the CALBAS standard routine. If PRTFLG is zero control transfers to the CHPUT standard routine
to output the character to the screen. Assuming the printer is active RAWPRT is checked. If this is non-zero the
character is passed directly to the printer (1BABH), otherwise control drops into the OUTDLP standard routine.

 Address... 1B63H
 Name...... OUTDLP
 Entry..... A=Character to output
 Exit...... None
 Modifies.. EI

Standard routine to output a character to the printer. If the character is a TAB code (09H) spaces are issued to the
OUTDLP standard routine until LPTPOS is a multiple of eight (0, 8, 16 etc.). If the character is a CR code (0DH)
LPTPOS is zeroed if it is any other control code LPTPOS is unaffected, if it is a displayable character LPTPOS is
incremented. If NTMSXP is zero, meaning an MSX-specific printer is connected, the character is passed directly to the
printer (1BABH). Assuming a normal printer is connected the CNVCHR standard routine is used to check for graphic
characters. If the character is a header code (01H) the routine terminates with no action. If it is a con|ed graphic
character it is replaced by a space, all other characters are passed to the printer (1BACH).

 Address... 1B97H

This twenty byte table is used by the keyboard decoder to find the correct routine for a given key number:

- 50 -

 KEY NUMBER TO FUNCTION

 00H to 2FH 0F83H Rows 0 to 5
 30H to 32H 0F10H SHIFT, CTRL, GRAPH
 33H 0F36H CAP
 34H 0F10H CODE
 35H to 39H 0FC3H F1 to F5
 3AH to 3BH 0F10H ESC, TAB
 3CH 0F46H STOP
 3DH to 40H 0F10H BS, CR, SEL, SPACE
 41H 0F06H HOME
 42H to 57H 0F10H INS, DEL, CURSOR

 Address... 1BABH

This routine is used by the OUTDLP standard routine to pass a character to the printer. It is sent via the LPTOUT
standard routine, if this returns Flag C control transfers to the "Device I/O error" generator (73B2H) via the CALBAS
standard routine.

 Address... 1BBFH

The following 2 KB contains the power-up character set. The first eight bytes contain the pattern for character code
00H, the second eight bytes the pattern for character code 01H and so on to character code FFH.

 Address... 23BFH
 Name...... PINLIN
 Entry..... None
 Exit...... HL=Start of text, Flag C if CTRL-STOP termination
 Modifies.. AF, BC, DE, HL, EI

Standard routine used by the BASIC Interpreter Mainloop to collect a logical line of text from the console. Control
transfers to the INLIN standard routine just after the point where the previous line has been cut (23E0H).

 Address... 23CCH
 Name...... QINLIN
 Entry..... None
 Exit...... HL=Start of text, Flag C if CTRL-STOP termination
 Modifies.. AF, BC, DE, HL, EI

Standard routine used by the "INPUT" statement handler to collect a logical line of text from the console. The
characters "? " are displayed via the OUTDO standard routine and control drops into the INLIN standard routine.

 Address... 23D5H
 Name...... INLIN
 Entry..... None
 Exit...... HL=Start of text, Flag C if CTRL-STOP termination
 Modifies.. AF, BC, DE, HL, EI

Standard routine used by the "LINE INPUT" statement handler to collect a logical line of text from the console.
Characters are read from the keyboard until either the CR or CTRL-STOP keys are pressed. The logical line is then read
from the screen character by character and placed in the Workspace Area text buffer BUF. The current screen
coordinates are first taken from CSRX and CSRY and placed in FSTPOS. The screen row immediately above the
current one then has its entry in LINTTB made non-zero (0C29H) to stop it extending logically into the current row.
Each keyboard character read via the CHGET standard routine is checked (0919H) against the editing key table at
2439H. Control then transfers to one of the editing routines or to the default key handler (23FFH) as appropriate. This
process 4 continues until Flag C is returned by the CTRL-STOP or CR routines. Register pair HL is then set to point to
the start of BUF and the routine terminates. Note that the carry, flag is cleared when Flag NZ is also returned to
distinguish between a CR or protected CTRL-STOP termination and a normal CTRL-STOP termination.

 Address... 23FFH

This routine processes all characters for the INLIN standard routine except the special editing keys. If the character is a
TAB code (09H) spaces are issued (23FFH) until CSRX is a multiple of eight plus one (columns 1, 9, 17, 25, 33). If the
character is a graphic header code (01H) it is simply echoed to the OUTDO standard routine. All other control codes

- 51 -

smaller than 20H are echoed to the OUTDO standard routine after which INSFLG and CSTYLE are zeroed. For the
displayable characters INSFLG is first checked and a space inserted (24F2H) if applicable before the character is
echoed to the OUTDO standard routine.

 Address... 2439H

This table contains the special editing keys recognized by the INLIN standard routine together with the relevant
addresses:

 CODE TO FUNCTION
 --
 08H 2561H BS, backspace
 12H 24E5H INS, toggle insert mode
 1BH 23FEH ESC, no action
 02H 260EH CTRL-B, previous word
 06H 25F8H CTRL-F, next word
 0EH 25D7H CTRL-N, end of logical line
 05H 25B9H CTRL-E, clear to end of line
 03H 24C5H CTRL-STOP, terminate
 0DH 245AH CR, terminate
 15H 25AEH CTRL-U, clear line
 7FH 2550H DEL, delete character

 Address... 245AH

This routine performs the CR operation for the INLIN standard routine. The starting coordinates of the logical line are
found (266CH) and the cursor removed from the screen (0A2EH). Up to 254 characters are then read from the VDP
VRAM (0BD8H) and placed in BUF. Any null codes (00H) are ignored, any characters smaller than 20H are replaced
by a graphic header code (01H) and the character itself with 40H added. As the end of each physical row is reached
LINTTB is checked (0C1DH) to see whether the logical line extends to the next physical row. Trailing spaces are then
stripped from BUF and a zero byte added as an end of text marker. The cursor is restored to the screen (09E1H) and its
coordinates set to the last physical row of the logical line via the POSIT standard routine. A LF code is issued to the
OUTDO standard routine, INSFLG is zeroed and the routine terminates with a CR code (0DH) in register A and Flag
NZ,C. This CR code will be echoed to the screen by the INLIN standard routine mainloop just before it terminates.

 Address... 24C5H

This routine performs the CTRL-STOP operation for the INLIN standard routine. The last physical row of the logical
line is found by examining LINTTB (0C1DH), CSTYLE is zeroed, a zero byte is placed at the start of BUF and all
music variables are cleared via the GICINI standard routine. TRPTBL is then examined (0454H) to see if an "ON
STOP" statement is active, if so the cursor is reset (24AFH) and the routine terminates with Flag NZ,C. BASROM is
then checked to see whether a protected ROM is running, if so the cursor is reset (24AFH) and the routine terminates
with Flag NZ,C. Otherwise the cursor is reset (24B2H) and the routine terminates with Flag Z,C.

 Address... 24E5H

This routine performs the INS operation for the INLIN standard routine. The current state of INSFLG is in|ed and
control terminates via the CSTYLE setting routine (242CH).

 Address... 24F2H

This routine inserts a space character for the default key section of the INLIN standard routine. The cursor is removed
(0A2EH) and the current cursor coordinates taken from CSRX and CSRY. The character at this position is read from
the VDP VRAM (0BD8H) and replaced with a space (0BE6H). Successive characters are then copied one column
position to the right until the end of the physical row is reached. At this point LINTTB is examined (0C1DH) to
determine whether the logical line is extended, if so the process continues on the next physical row. Otherwise the
character taken from the last column position is examined, if this is a space the routine terminates by replacing the
cursor (09E1H). Otherwise the physical row's entry in LINTTB is zeroed to indicate an extended logical line. The
number of the next physical row is compared with the number of rows on the screen (0C32H). If the next row is the last
one the screen is scrolled up (0A88H), otherwise a blank row is inserted (0AB7H) and the copying process continues.

- 52 -

 Address... 2550H

This routine performs the DEL operation for the INLIN standard routine. If the current cursor position is at the
rightmost column and the logical line is not extended no action is taken other than to write a space to the VDP VRAM
(2595H). Otherwise a RIGHT code (1CH) is issued to the OUTDO standard routine and control drops into the BS
routine.

 Address... 2561H

This routine performs the BS operation for the INLIN standard routine. The cursor is first removed (0A2EH) and the
cursor column coordinate decremented unless it is at the leftmost position and the previous row is not extended.
Characters are then read from the VDP VRAM (0BD8H) and written back one position to the left (0BE6H) until the
end of the logical line is reached. At this point a space is written to the VDP VRAM (0BE6H) and the cursor character
is restored (09E1H).

 Address... 25AEH

This routine performs the CTRL-U operation for the INLIN standard routine. The cursor is removed (0A2EH) and the
start of the logical line located (266CH) and placed in CSRX and CSRY. The entire logical line is then cleared
(25BEH).

 Address... 25B9H

This routine performs the CTRL-E operation for the INLIN standard routine. The cursor is removed (0A2EH) and the
remainder of the physical row cleared (0AEEH). This process is repeated for successive physical rows until the end of
the logical line is found in LINTBB (0C1DH). The cursor is then restored (09E1H), INSFLG zeroed and CSTLYE reset
to a block cursor (242DH).

 Address... 25D7H

This routine performs the CTRL-N operation for the INLIN standard routine. The cursor is removed (0A2EH) and the
last physical row of the logical line found by examination of LINTTB (0C1DH). Starting at the rightmost column of
this physical row characters are read from the VDP VRAM (0BD8H) until a non-space character is found. The cursor
coordinates are then set one column to the right of this position (0A5BH) and the routine terminates by restoring the
cursor (25CDH).

 Address... 25F8H

This routine performs the CTRL-F operation for the INLIN standard routine. The cursor is removed (0A2EH) and
moved successively right (2624H) until a non-alphanumeric character is found. The cursor is then moved successively
right (2624H) until an alphanumeric character is found. The routine terminates by restoring the cursor (25CDH).

 Address... 260EH

This routine performs the CTRL-B operation for the INLIN standard routine. The cursor is removed (0A2EH) and
moved successively left (2634H) until an alphanumeric character is found. The cursor is then moved successively left
(2634H) until a non-alphanumeric character is found and then moved one position right (0A5BH). The routine
terminates by restoring the cursor (25CDH).

 Address... 2624H

This routine moves the cursor one position right (0A5BH), loads register D with the rightmost column number, register
E with the bottom row number and then tests for an alphanumeric character at the cursor position (263DH).

 Address... 2634H

This routine moves the cursor one position left (0A4CH), loads register D with the leftmost column number and register
E with the top row number. The current cursor coordinates are compared with these values and the routine terminates
Flag Z if the cursor is at this position. Otherwise the character at this position is read from the VDP VRAM (0BD8H)
and checked to see if it is alphanumeric. If so the routine terminates Flag NZ,C otherwise it terminates Flag NZ,NC.
The alphanumeric characters are the digits "0" to "9" and the letters "A" to "Z" and "a" to "z". Also included are the

- 53 -

graphics characters 86H to 9FH and A6H to FFH, these were originally Japanese letters and should have been excluded
during the conversion to the UK ROM.

 Address... 266CH

This routine finds the start of a logical line and returns its screen coordinates in register pair HL. Each physical row
above the current one is checked via the LINTTB table (0C1DH) until a non-extended row is found. The row
immediately below this on the screen is the start of the logical line and its row number is placed in register L. This is
then compared with FSTPOS, which contains the row number when the INLIN standard routine was first entered, to see
if the cursor is still on the same line. If so the column coordinate in register H is set to its initial position from FSTPOS.
Otherwise register H is set to the leftmost position to return the whole line.

 Address...2680H
JP to power-up initialize routine (7C76H).

 Address...2683H
JP to the SYNCHR standard routine (558CH).

 Address...2686H
JP to the CHRGTR standard routine (4666H).

 Address...2689H
JP to the GETYPR standard routine (5597H).

